首页> 外文会议>Massive Energy Storage for the Broader Use of Renewable Energy Sources 2013 >Heat Transfer Analysis in Encapsulated Phase Change Material Capsule for Thermal Energy Storage
【24h】

Heat Transfer Analysis in Encapsulated Phase Change Material Capsule for Thermal Energy Storage

机译:储热的密封相变材料胶囊中的传热分析

获取原文
获取原文并翻译 | 示例

摘要

Transient two dimensional heat transfer simulations of an encapsulated phase change material (EPCM) capsule as applicable to high temperature energy storage (>300℃) for concentrated solar power (CSP) and other applications are conducted. Sodium nitrate, NaNO_3, is used here as a potential phase change material (PCM) with stainless steel as the encapsulation but the results have broader implications. 76.2 mm (3 inch) diameter horizontally placed cylinder is recommended for the applications according to the simulations for both horizontally placed cylinder and vertically placed cylinder. For vertically placed cylinders, some PCM at the bottom area could melt first with unduly large pressures in the capsule under certain circumstances. Such effects are less likely in horizontal EPCM cylinders. Therefore, horizontally placed cylinder is proposed for the simulations. Different types of heat transfer fluids (HTFs) are used for the analysis - air and liquid VP-1. According to the simulations, the liquid heat transfer fluid could significantly shorten the energy storage times for EPCM compared to air as HTF. Thus, larger size of EPCM capsule could be used for energy storage when using liquid as HTF. The current work describes effects of and predictions related to buoyancy-driven convection in the molten phase change material and void space inside the EPCM capsule that are essential for EPCM used for thermal energy storage. The effects of natural convection in the liquid PCM can decrease the time for phase change that could also be relevant for larger EPCMs. The volumetric expansion of molten NaNO_3 during phase change may require about 20% of void space inside the capsule. The effects of density variation in liquid PCM during phase change and the gravity effect of solid PCM are considered. During the charging (energy input) process, the volume of the void would decrease while the pressure in the void space would increase but with proper design the resulting pressure can be kept under acceptable values of stress in the capsule. The void space inside the capsule would slightly increase the energy storage times because the air in the void would act as an insulator. Understanding the heat transfer process inside the EPCM capsule, enables the optimization the size of EPCM, choice the type of PCMs, as well as help with the design of EPCM capsule and EPCM based thermocline.
机译:进行了相变材料(EPCM)胶囊的二维瞬态传热模拟,该相变材料适用于高温储能(> 300℃)的聚光太阳能(CSP)和其他应用。硝酸钠NaNO_3在这里被用作潜在的相变材料(PCM),以不锈钢作为封装材料,但结果具有更广泛的意义。根据水平放置圆柱和垂直放置圆柱的模拟,建议将直径76.2毫米(3英寸)的水平放置圆柱用于应用。对于垂直放置的圆柱体,在某些情况下,底部区域中的某些PCM可能会先以胶囊中的过大压力首先熔化。在水平EPCM圆柱中,这种影响不太可能发生。因此,建议将水平放置的圆柱体用于仿真。分析使用不同类型的传热流体(HTF)-空气和液体VP-1。根据模拟,与空气中的HTF相比,液态传热流体可以大大缩短EPCM的能量存储时间。因此,当使用液体作为HTF时,较大尺寸的EPCM胶囊可用于能量存储。当前的工作描述了熔融相变材料中的浮力驱动对流的影响以及与之相关的预测,以及EPCM胶囊内部的空隙空间,这些对EPCM用于热能存储至关重要。液体PCM中的自然对流效应可以减少相变时间,这也可能与较大的EPCM有关。相变期间熔融NaNO_3的体积膨胀可能需要胶囊内部约20%的空隙空间。考虑了相变期间液体PCM中密度变化的影响和固体PCM的重力影响。在充电(能量输入)过程中,空隙的体积将减小,而空隙空间中的压力将增加,但是通过适当的设计,可以将所得压力保持在胶囊中的可接受应力值以下。胶囊内部的空隙空间会略微增加能量存储时间,因为空隙中的空气将充当绝缘体。了解EPCM胶囊内部的传热过程,可以优化EPCM的尺寸,选择PCM的类型,以及帮助设计EPCM胶囊和基于EPCM的温床。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号