首页> 外文会议>Laser resonators, microresonators, and beam control XVI >Spectral control and temporal properties of resonant optical propulsion of dielectric microspheres in evanescent fiber couplers
【24h】

Spectral control and temporal properties of resonant optical propulsion of dielectric microspheres in evanescent fiber couplers

机译:van逝光纤耦合器中介电微球共振光学推进的光谱控制和时间特性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Resonant light pressure effects provide new degrees of freedom for optical manipulation of microparticles. In particular, they can be used for optical sorting of photonic atoms with extraordinary uniform resonant properties. These atoms can be used as building blocks of structures and devices with engineered photonic dispersions. To study the spectral shape of the force peaks, we developed a method to precisely control the wavelength detuning between the tunable laser emission line and central position of the whispering gallery mode (WGM) peaks in tapered fiber-to-microsphere water-immersed couplers. Our method is achieved by integrating optical tweezers to individually manipulate microspheres and based on preliminary spectral characterization of WGM peak positions followed by setting a precise amount of laser wavelength detuning for optical propulsion experiments. We demonstrated dramatic enhancement of the optical forces exerted on 20 μm polystyrene spheres under resonant conditions. Spectral properties of the resonant force enhancement were studies with controlled laser line detuning. In addition, we observed the dynamics of radial trapping and longitudinal propelling process and analyzed their temporal properties. Our studies also demonstrated a stable radial trapping of microspheres near the surface of tapered fiber for high speed resonant optical propulsion along the fiber.
机译:共振光压效应为微粒的光学操作提供了新的自由度。特别是,它们可用于具有非凡均匀共振特性的光子原子的光学分选。这些原子可用作具有工程光子分散体的结构和设备的构建基块。为了研究力峰的光谱形状,我们开发了一种方法来精确控制可调谐激光发射线和锥形光纤到微球水浸式耦合器中回音壁模式(WGM)峰中心位置之间的波长失谐。我们的方法是通过集成光镊来单独操纵微球并基于WGM峰值位置的初步光谱表征,然后为光学推进实验设置精确量的激光波长失谐来实现的。我们证明了在共振条件下施加在20μm聚苯乙烯球上的光学力有了显着提高。利用受控的激光线失谐研究了共振力增强的光谱特性。此外,我们观察了radial陷和纵向推进过程的动力学,并分析了它们的时间特性。我们的研究还表明,在锥形光纤表面附近的微球具有稳定的径向捕获,可沿光纤高速共振光学推进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号