【24h】

Theoretical studies of collisionless shocks for laser-acceleration of ions

机译:离子激光加速无碰撞冲击的理论研究

获取原文
获取原文并翻译 | 示例

摘要

Recently, strong effort has been done in exploring shock acceleration for the generation of highly energetic ion beams, with applications e.g. for medical purposes. The heating of a near-critical density plasma target with a laser, increases the electron temperature and excites ion acoustic waves, which can lead to electrostatic shock formation due to non-linear wave breaking. The higher inertia background ions are reflected and accelerated at the shock potential, showing a quasi-monoenergetic profile. For the first time, its feasibility has been demonstrated experimentally, gaining 20 MeV protons with a very narrow energy spread and a predicted scaling up to 200 MeV for lasers with a_0 = 10. In the quest for high proton energies, optimal conditions for shock formation have to be found. We developed a relativistic model that connects the initial parameters with the steady state shock Mach number, which is based on the Sagdeev approach, showing an increase of the ion energy for high upstream electron temperatures and low downstream to upstream density ratios and high temperature ratios, which has been confirmed by particle-in-cell simulations. In the context of producing a quasi-monoenergetic beam profile, we studied the enhancement of the Weibel instability in an electrostatic shock setup. Governing parameter regimes for the transition to an electromagnetic shock, which is associated with a broadening of the ion spectrum, were determined analytically and confirmed with simulations.
机译:近来,已经在探索冲击加速度方面做出了巨大的努力,以产生高能离子束,其应用例如有。用于医疗目的。用激光加热接近临界密度的等离子体靶,会提高电子温度并激发离子声波,这会导致由于非线性波的破坏而形成静电冲击。较高惯性的背景离子在电击势中被反射并加速,显示出准单能曲线。首次通过实验证明了其可行性,它获得了20 MeV质子,具有非常窄的能量分布,并且对于a_0 = 10的激光器,预计可扩展至200 MeV。在寻求高质子能量时,形成冲击的最佳条件必须找到。我们开发了一个相对论模型,该模型基于Sagdeev方法将初始参数与稳态激波马赫数联系起来,表明在较高的上游电子温度以及较低的下游与上游密度比和高温比下,离子能量会增加,细胞颗粒模拟已经证实了这一点。在产生准单能光束轮廓的情况下,我们研究了静电冲击装置中Weibel不稳定性的增强。通过分析确定了过渡到电磁波的控制参数制度,这与离子光谱的扩大有关,并通过仿真得到了证实。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号