首页> 外文会议>Journal of alloys and compounds : An interdisciplinary journal of materials science and solid-state chemistry and physics >Microstructures and mechanical behaviors of Mg_(58)Cu_(31)Gd_(11) and Mg_(65)Cu_(25)Gd_(10) amorphous alloys synthesized by injection casting and melt spinning
【24h】

Microstructures and mechanical behaviors of Mg_(58)Cu_(31)Gd_(11) and Mg_(65)Cu_(25)Gd_(10) amorphous alloys synthesized by injection casting and melt spinning

机译:Mg_(58)Cu_(31)Gd_(11)和Mg_(65)Cu_(25)Gd_(10)非晶态合金的铸造和熔体纺丝的显微组织和力学行为

获取原文
获取原文并翻译 | 示例

摘要

Mg_(58)Cu_(31)Gd_(11) and Mg_(65)Cu_(25)Gd_(10) alloys were synthesized via two processing routes, injection casting and melt spinning. The diameter of the injection-cast bars was 4 mm in diameter. The XRD results obtained for the Mg_(58)Cu_(31)Gd_(11) are nearly identical to those for the Mg_(65)Cu_(25)Gd_(10), showing amorphous-like broad characteristic peaks. All the four characteristic temperatures, T_g, T_x, T_m and T_l, of the Mg_(65)Cu_(25)Gd_(10) are essentially lower than those of Mg_(58)Cu_(31)Gd_(11), for both injection-cast rods and melt-spun ribbons. The glass forming abilities of the Mg_(65)Cu_(25)Gd_(10) are similar to those of Mg_(58)Cu_(31)Gd_(11), for both injection-cast rods and melt-spun ribbons, indicated by T_(rg) = 0.60 and γ=0.42. The average microhardness of the Mg_(65)Cu_(25)Gd_(10) is 2.41 GPa and 2.27 GPa for injection-cast bars and melt-spun ribbons, respectively, which are significantly lower than 2.84 GPa and 2.49 GPa of the Mg_(58)Cu_(31)Gd_(11). The nanohardness at the maximum load from the multiple loading is 3.5 GPa for Mg_(65)Cu_(25)Gd_(10), which is lower than 3.9 GPa for Mg_(58)Cu_(31)Gd_(11). The curves of load vs. the depth obtained from the nanoindentation tests all show stepwise behavior due to the pop-in events, and the step width increases as the indentation rate decreases. The modulus at the maximum load from the multiple loading obtained from the nanoindentation tests is 64.9 GPa for Mg_(65)Cu_(25)Gd_(10), which is lower than 70.7 GPa for Mg_(58)Cu_(31)Gd_(11). The fracture stress and strain of the Mg_(65)Cu_(25)Gd_(10) BMG rod at room temperature are 490 MPa and 3%, respectively, smaller than those of the Mg_(58)Cu_(31)Gd_(11) BMG rod, 548 MPa and 3.2%, respectively. The Mg_(58)Cu_(31)Gd_(11) BMG rod is stronger at room temperature, and also shows higher yield stress and less deformable at elevated temperature, than the Mg_(65)Cu_(25)Gd_(10) BMG rod.
机译:Mg_(58)Cu_(31)Gd_(11)和Mg_(65)Cu_(25)Gd_(10)合金通过注射铸造和熔融纺丝这两种加工路线合成。压铸棒的直径为4mm。 Mg_(58)Cu_(31)Gd_(11)的XRD结果与Mg_(65)Cu_(25)Gd_(10)的XRD结果几乎相同,显示出类似非晶的宽特征峰。对于两种注入,Mg_(65)Cu_(25)Gd_(10)的所有四个特征温度T_g,T_x,T_m和T_1都基本上低于Mg_(58)Cu_(31)Gd_(11)的温度。铸棒和熔纺丝带。 Mg_(65)Cu_(25)Gd_(10)的玻璃形成能力与Mg_(58)Cu_(31)Gd_(11)的玻璃形成能力相似,对于注铸棒和熔纺带而言,用T_(rg)= 0.60和γ= 0.42。 Mg_(65)Cu_(25)Gd_(10)的平均显微硬度对于注铸棒和熔纺带分别为2.41 GPa和2.27 GPa,远低于Mg_(2.84 GPa和2.49 GPa 58)Cu_(31)Gd_(11)。 Mg_(65)Cu_(25)Gd_(10)在多次加载时最大负载下的纳米硬度为3.5 GPa,低于Mg_(58)Cu_(31)Gd_(11)的3.9 GPa。从纳米压痕测试获得的载荷与深度的关系曲线均显示了由于弹出事件引起的逐步行为,并且随着压痕速率的降低,步幅增加。从纳米压痕测试获得的多重载荷下,最大载荷下的模量对于Mg_(65)Cu_(25)Gd_(10)为64.9 GPa,低于对于Mg_(58)Cu_(31)Gd_(11)为70.7 GPa )。 Mg_(65)Cu_(25)Gd_(10)BMG杆在室温下的断裂应力和应变分别为490 MPa和3%,比Mg_(58)Cu_(31)Gd_(11)的断裂应力和应变小。 BMG杆分别为548 MPa和3.2%。 Mg_(58)Cu_(31)Gd_(11)BMG棒在室温下比Mg_(65)Cu_(25)Gd_(10)BMG棒更强,并且在高温下也表现出更高的屈服应力和较小的变形。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号