【24h】

A Viscoelastic Two-Phase Model for Cartilage Tissues

机译:软骨组织的粘弹性两相模型

获取原文
获取原文并翻译 | 示例

摘要

Hydrated soft tissues such as cartilage can be considered as porous materials consisting of an organic solid matrix (collagen and proteoglycans) ventilated by a pore-fluid (water and elektrolytes). These types of biological tissues significantly demonstrate viscoelastic phenomena under various configurations of deformation. Two distinct mechanisms exist for this dissipative behaviour, the frictional drag associated with the interstitial fluid flow through the porous solid matrix and the flow-independent viscoelastic properties of the organic solid matrix itself. The goal of this paper is to describe this complex behaviour by a biphasic viscoelastic model accounting for both the flow-dependent fluid-solid interaction and the intrinsic skeleton viscoelasticity. Therefore, the macroscopic Theory of Porous Media (TPM) is applied, where the effective skeleton stress is determined by an appropriate viscoelasticity law. The fundamental approach of the viscoelasticity law is based on the thermodynamics with internal state variables, where a hyperelastic material formulation is used. Since cartilage tissues exhibit deformation dependent permeability effects, it is assumed that the permeability is a function of the actual porosity of the solid skeleton. Futhermore, both constituents are modelled materially incompressible; thermal effects and mass exchanges are excluded. The viscoelastic two-phase model is implemented into PANDAS, an adaptive finite element code for multi-phase problems. To show the capability, the model is applied to articular cartilage, where some representative problems are computed. On this occasion, the influence of the intrinsic viscoelasticity of the solid skeleton is studied. In addition, the problem of separating the flow-independent dissipative behaviour from the flow-dependent consolidation process is discussed.
机译:水合的软组织,例如软骨,可以被认为是由一种有机固体基质(胶原蛋白和蛋白聚糖)组成的多孔材料,通过多孔流体(水和电泳液)进行通气。这些类型的生物组织在各种变形构造下均显着表现出粘弹性现象。对于这种耗散行为,存在两种不同的机制,即与间隙流体流过多孔固体基质相关的摩擦阻力和有机固体基质本身的与流动无关的粘弹性质。本文的目的是通过一个双相粘弹性模型来描述这种复杂的行为,该模型同时考虑了与流动有关的液固相互作用和固有骨架粘弹性。因此,应用了多孔介质宏观理论(TPM),其中有效骨架应力由适当的粘弹性定律确定。粘弹性定律的基本方法是基于具有内部状态变量的热力学,其中使用了超弹性材料配方。由于软骨组织表现出与变形有关的渗透率效应,因此假设渗透率是固体骨架的实际孔隙率的函数。此外,这两种成分都建模为材料不可压缩的。热效应和质量交换不包括在内。粘弹性两相模型被实现为PANDAS,这是一种针对多相问题的自适应有限元代码。为了显示这种能力,该模型被应用于关节软骨,其中计算了一些代表性问题。在这种情况下,研究了固体骨架的固有粘弹性的影响。此外,讨论了将与流量无关的耗散行为与与流量无关的固结过程分离的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号