【24h】

DETERMINATION OF THE MATERIAL INTRINSIC LENGTH SCALE OF GRADIENT PLASTICITY THEORY

机译:梯度可塑性理论的材料内在尺度的确定

获取原文
获取原文并翻译 | 示例

摘要

The enhanced strain-gradient plasticity theories formulate a constitutive framework on the continuum level that is used to bridge the gap between the micromechanical plasticity and the classical continuum plasticity. To assess the size effects it is indispensable to incorporate an intrinsic material length parameter into the constitutive equations. However, the full utility of gradient-type theories hinges on one's ability to determine the constitutive length-scale parameter. The classical continuum plasticity is unable to predict properly the evolution of the material flow stress since the local deformation gradients at a given material point are not accounted for. The gradient-based flow stress is commonly assumed to rely on a mixed type of dislocations: statistically stored dislocations (SSDs) and geometrically necessary dislocations (GNDs). In this work a micromechanical model to assess the coupling between SSDs and GNDs, which is based on the Taylor's hardening law, is used to identify the deformation-gradient-related intrinsic length-scale parameter in terms of measurable microstructural physical parameters. This work also presents a method for identifying the length-scale parameter from micro-indentation tests.
机译:增强的应变梯度可塑性理论在连续体水平上构成了本构框架,用于弥补微机械可塑性和经典连续体可塑性之间的差距。为了评估尺寸效应,必须将固有的材料长度参数合并到本构方程中。但是,梯度类型理论的全部实用性取决于一个人确定本构长度尺度参数的能力。经典连续体可塑性无法正确预测材料流动应力的演变,因为未考虑给定材料点的局部变形梯度。通常假定基于梯度的流应力取决于位错的混合类型:统计存储的位错(SSD)和几何上必需的位错(GND)。在这项工作中,基于泰勒硬化定律的微机械模型用于评估SSD和GND之间的耦合,用于根据可测量的微结构物理参数来识别与变形梯度相关的固有长度尺度参数。这项工作还提出了一种从微压痕测试中识别长度尺度参数的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号