【24h】

VISCOELASTIC NONLINEAR TRAVELING WAVES AND DRAG REDUCTION IN PLANE POISEUILLE FLOW

机译:平面泊固流中的粘弹性非线性行波及减阻

获取原文
获取原文并翻译 | 示例

摘要

Nonlinear traveling wave solutions to the Navier-Stokes equations in the plane Poiseuille geometry (Waleffe, F. (2003), Phys. Fluids 15, 1517-1534) come into existence through a saddle-node bifurcation at a Reynolds number of 977, very close to the experimentally observed Reynolds number of ~ 1000 for transition to turbulence in this geometry. These traveling waves are comprised of staggered counter-rotating streamwise vortices with a spanwise wavelength of 106 wall units, in good agreement with the experimentally observed value of ~ 100 wall units for buffer layer structures. In the present work, the effect of viscoelasticity on these states is examined, using the FENE-P constitutive model of polymer solutions. The changes to the velocity field for the viscoelastic traveling waves mirror those experimentally observed in fully turbulent flows of polymer solutions near the onset of turbulent drag reduction: drag is reduced, streamwise velocity fluctuations increase and wall-normal fluctuations decrease. The mechanism underlying theses changes is elucidated through an examination of the forces exerted by the polymer molecules on the fluid. The onset Weis-senberg number (shear rate times polymer relaxation time) for drag reduction is insensitive to polymer extensibility or concentration. Above the onset Weis-senberg number, there is a dramatic increase in the critical wall-normal length scale at which the nonlinear traveling waves can exist. This sharp increase in length scale directly correlates with the extensibility and concentration of the polymer molecules and is consistent with the observed shift to higher Reynolds numbers of the transition to turbulence in polymer solutions. The balance of turbulent kinetic energy for the nonlinear traveling waves shows the same qual-ititative changes as are found in full turbulence, as do the overall kinematics of stretching and rotation in the flow. These observations suggest that the mechanism of near-onset drag reduction in flow over smooth walls is captured by the effect of viscoelasticity on these nonlinear traveling waves.
机译:平面Poiseuille几何中Navier-Stokes方程的非线性行波解(Waleffe,F.(2003),Phys。Fluids 15,1517-1534)通过鞍结分叉在977的雷诺数存在在此几何形状中,接近于实验观察到的〜1000的雷诺数转换为湍流。这些行波由交错的反向旋转的涡流组成,其涡旋方向的波长为106个壁单元,与缓冲层结构的实验观察值〜100个壁单元非常吻合。在目前的工作中,使用聚合物溶液的FENE-P本构模型检查了粘弹性对这些状态的影响。粘弹性行波速度场的变化反映了在湍流减阻作用开始附近的聚合物溶液的全湍流中实验观察到的变化:阻力减小,流向速度波动增加,壁法向波动减小。通过检查聚合物分子在流体上施加的力,阐明了这些变化的机理。用于减阻的起始Weis-senberg数(剪切速率乘以聚合物弛豫时间)对聚合物的延展性或浓度不敏感。在开始的Weis-senberg数以上,临界壁-法线长度尺度会急剧增加,在该尺度下可能会存在非线性行波。长度尺度的这种急剧增加与聚合物分子的可扩展性和浓度直接相关,并且与在聚合物溶液中观察到的向湍流转变的更高雷诺数的转变一致。非线性行波的湍动能平衡显示出与完全湍流中相同的定性变化,以及流体中拉伸和旋转的整体运动学。这些观察结果表明,通过在这些非线性行波上的粘弹性效应,可以捕获光滑壁上流动近乎减阻的机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号