首页> 外文会议>ISES solar world congress on solar energy for a sustainable future;ISES 2003 >HYBRID CONCENTRATED PHOTOVOLTAIC AND THERMAL POWER CONVERSION AT DIFFERENT SPECTRAL BANDS
【24h】

HYBRID CONCENTRATED PHOTOVOLTAIC AND THERMAL POWER CONVERSION AT DIFFERENT SPECTRAL BANDS

机译:不同谱带上的混合型聚光和热功率转换

获取原文

摘要

The concept of using the beam-down optics of a solar tower system for large-scale and gridconnected concentrated photovoltaic (PV) cells is examined. The rationale is to use this system to split the solar spectrum. Part of the spectrum can be utilized for PV cells. For instance, mono-crystalline silicon cells can convert the 600–900 nm band to electricity at an efficiency of 55–60%. The rest of the spectrum remains concentrated and it can be used thermally to generate electricity in Rankine-Brayton cycles or to operate chemical processes. Two optical approaches for a large-scale system are described and analyzed. In the first concept, the hyperboloid-shaped tower reflector is used as the spectrum splitter. Its mirrors can be made of transparent fused silica glass, coated with a dielectric layer, functioning as a band-pass filter. The transmitted band reaches the upper focal zone, where an array of PV modules is placed. The location of these modules and their interconnections depend on the desirable concentration level and the uniformity of the flux distribution. The reflected band is directed to the second focal zone near the ground, where a compound parabolic concentrator (CPC) is required to recover and enhance the concentration to a level depending on the operating temperature at this target. In the second approach, the total solar spectrum is reflected down by the tower reflector. Before reaching the lower focal plane, the spectrum is split and filtered. One band can be reflected and directed horizontally to a PV array and, in this case, the rest of the spectrum is transmitted to the lower focal plane. To illustrate the feasibility of these options, commercial silicon cells with antireflective coating, intended to operate under concentrated solar radiation in the range of 200–500 suns, were chosen. The results show that 8 MWe from the PV array and 13 MWe from a combined cycle can be generated from a solar heat input of 54 MW.
机译:考察了将太阳能塔系统的向下束式光学器件用于大规模并网连接的聚光光伏(PV)电池的概念。基本原理是使用该系统拆分太阳光谱。光谱的一部分可以用于PV电池。例如,单晶硅电池可以以55-60%的效率将600-900 nm的波段转换为电。光谱的其余部分保持集中状态,可用于兰金-布雷顿循环中的热发电或化学过程。描述和分析了用于大型系统的两种光学方法。在第一个概念中,双曲面形状的塔反射器用作光谱分离器。它的镜子可以用透明的熔融石英玻璃制成,并涂上一层介电层,用作带通滤光片。传输的波段到达上焦点区,在该上焦点区放置了一组PV模块。这些模块及其互连的位置取决于所需的浓度水平和通量分布的均匀性。反射带被定向到靠近地面的第二聚焦区域,在该区域,需要一个复合抛物面聚光器(CPC)来恢复浓度并将浓度提高到取决于此目标的工作温度的水平。在第二种方法中,塔架反射器将总太阳光谱向下反射。在到达下焦平面之前,先对频谱进行拆分和滤波。一个波段可以被反射并水平指向PV阵列,在这种情况下,其余光谱被传输到下焦平面。为了说明这些选择的可行性,选择了具有抗反射涂层的商用硅电池,该电池打算在200-500太阳的集中太阳辐射下工作。结果表明,从54兆瓦的太阳能输入中可以产生8兆瓦的光伏阵列和13兆瓦的联合循环发电。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号