首页> 外文会议>Iron 0re 2002 Conference Sep 9-11, 2002 Perth, Western Australia >Iron Ore Genesis and Post-Ore Metasomatism at Mount Tom Price
【24h】

Iron Ore Genesis and Post-Ore Metasomatism at Mount Tom Price

机译:汤姆山普莱斯铁矿石的成因和矿石后的交代作用

获取原文
获取原文并翻译 | 示例

摘要

About 90 per cent of the pre-mining BIF-hosted iron ore resource of the Hamersley Province of Western Australia is of the Phanerozoic supergene martite-goethite type. The remaining ten per cent formed as supergene deposits at ~2000 +- 200 Ma, and were later modified by burial to form the Proterozoic martite-microplaty hematite ores. The supergene-metamorphic segment of this general unified model has been challenged by three recently published hypogene-based genetic models for the hematite ores, all requiring meteoric oxidation to produce the ore. The most recent and detailed, by Taylor et al (2001), is based on data from the small Southern Batter and North deposits of the Mount Tom Price mine. The authors proposed that during Stage 1 'overpressured bicarbonate-saturated basin brines from the dolomite aquifer of the Wittenoom Formation' at 150 - 250℃, dissolved free silica from BIF to produce a stratigraphically thinned, magnetite-carbonate-silicate-apatite rock. In Stage 2, meteoric oxidation of siderite to secondary microplaty hematite + ankerite, and magnetite to martite, at unspecified elevated temperatures and pressures, was followed by carbonate leaching (Stage 3). Finally, during Stage 4, weathering with removal of apatite, produced the typical low-phosphorus, porous martite-microplaty hematite ores of the Tom Price-Whaleback type. However, evidence of both microplaty hematite and martite reduced to magnetite, and of infill silica, apatite, and ferroan chlorite, with late-stage pyrite, in the pore space of martite-microplaty hematite ore, shows that the hydrothermal activity at Mount Tom Price is a post-ore event. Neither pyrite nor ferroan chlorite could resist the oxidation required to form hematite ore. Recrystallisation of microplaty hematite in these infilled zones to a typically coarser form than present in most of the normal ores, is a further supporting factor. A more credible, post-ore alternative to the hypogene genetic model is suggested here. Re-exposure to leaching by ground water of the metamorphosed ore deposits in the Phanerozoic resulted in the partial removal of remnant goethite. Localised modifications in the porous BIF/ore contact zones were driven by exothermic oxygen/pyrite/carbon reactions in the footwall Mt McRae Shale. Cool descending oxygenated meteoric water in the permeable ore horizons, acted as one limb of a thermal convective cell. In the other limb, heated reducing solutions rose through the permeable contact zones, to produce the observed localised modifications of BIF and ore. Expelled silica from the carbonatised BIF invaded adjacent porous ore to form erratic silicified ore zones, and to produce the local quartz vein systems found in the associated overlying BIF.
机译:西澳大利亚州哈默斯利省在BIF开采前开采的铁矿石资源中,约有90%是Phanerozoic表生岩马脱石-针铁矿类型。其余的百分之十在〜2000±-200 Ma形成为超生矿床,随后通过埋藏进行了改造,形成了元古代的马氏体-微板赤铁矿。这个通用统一模型的超基因-变质部分已经受到了三个最近发布的赤铁矿基于假基因的遗传模型的挑战,所有这些都需要通过陨石氧化来产生。 Taylor等人(2001年)的最新和详细信息是基于汤姆·普赖斯山(Mount Tom Price)矿山的南巴特和北矿的数据。作者提出,在第1阶段“从Wittenoom组白云岩含水层中超压碳酸氢盐饱和的盆地盐水”中,在150-250℃下,溶解来自BIF的游离二氧化硅,生成地层变薄的磁铁矿-碳酸盐-碳酸盐-硅酸盐-磷灰石岩。在阶段2中,在未指定的高温和高压下,将菱铁矿的陨石氧化成次级微片状赤铁矿+铁矿,然后将磁铁矿陨石成碳酸盐,然后进行碳酸盐浸出(阶段3)。最终,在阶段4中,风化并去除磷灰石,生产出了汤姆·普赖斯-鲸鱼型典型的低磷,多孔的马氏体-微板赤铁矿矿石。然而,在马氏体-微片状赤铁矿矿石的孔隙中,微量的赤铁矿和马氏体都还原成磁铁矿,并充填了二氧化硅,磷灰石和亚氯酸铁以及后期的黄铁矿的证据表明,在汤姆·普赖斯山有热液活动。是矿石后活动。黄铁矿和亚氯酸亚铁都不能抵抗形成赤铁矿所需的氧化。在这些填充区中的微型板状赤铁矿重结晶为通常比大多数普通矿石中存在的粗晶形式更进一步的支持因素。本文提出了一种更可靠,后矿石替代次基因遗传模型的方法。变质岩中变质矿床的地下水再次暴露导致部分残留针铁矿的去除。多孔BIF /矿石接触区中的局部修饰是由Mt McRae页岩下壁的氧气/黄铁矿/碳反应放热引起的。在可渗透矿石层中冷却的下降的氧化的陨石水,充当热对流池的一个分支。在另一分支中,加热的还原溶液通过可渗透的接触区上升,产生观察到的BIF和矿石的局部改性。从碳化的BIF排出的二氧化硅侵入邻近的多孔矿石,形成不稳定的硅化矿带,并在相关的上覆BIF中产生局部的石英脉系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号