首页> 外文会议>International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion; 20050703-06; Xi'an(CN) >Friction Relaxation Model for Fast Transient Flows Application to Water Hammer in Two-Phase Flow - The WAHA code
【24h】

Friction Relaxation Model for Fast Transient Flows Application to Water Hammer in Two-Phase Flow - The WAHA code

机译:两相流中水锤快速瞬态流动的摩擦松弛模型-WAHA代码

获取原文
获取原文并翻译 | 示例

摘要

The paper deals with the problem of the wall shear stress during rapid transient 1-D flows in a piping system caused by water hammers in two-phase flow induced by a fast valve closure. The evolution of the transient wall shear stress is interpreted in terms of two steps. The first step is a sudden and dramatic change of the wall shear stress due to the passage of the pressure wave. The second step is a relaxation process of the shear stress which is modeled from the Extended Irreversible Thermodynamics theory. The Friction Relaxation Model (FRM) presented in the first part of this paper describes both steps of the evolution of the wall shear stress during water hammers. The second part of the paper deals with the application of the FRM model as a closure low in the WAHA code. The main purpose of the WAHA code is to predict various mechanisms of single- and two-phase water hammer transients in piping systems. The last part of the paper deals with the simulation of several cases from the UMSICHT databank using the adapted WAHA computer code with the FRM model. The results of these simulations are systematically compared with the experimental data. It is concluded that the new FRM model has a clear effect on water hammer pressure wave damping and on the pressure wave propagation velocity.
机译:本文讨论了由于快速关闭阀门引起的两相流中的水锤引起的管道系统中一维快速瞬态流动中壁剪切应力的问题。瞬态壁面剪应力的演化可分为两个步骤。第一步是由于压力波的通过而使壁切应力突然而剧烈地变化。第二步是从扩展不可逆热力学理论建模的剪应力松弛过程。本文第一部分介绍的摩擦松弛模型(FRM)描述了水锤过程中壁面剪应力演化的两个步骤。本文的第二部分将FRM模型的应用作为WAHA代码中的闭包部分。 WAHA代码的主要目的是预测管道系统中单相和两相水锤瞬变的各种机制。本文的最后一部分使用URMICHT数据库中经过调适的WAHA计算机代码和FRM模型,对来自UMSICHT数据库的几种情况进行了仿真。这些模拟的结果与实验数据进行了系统比较。结论是,新的FRM模型对水锤压力波阻尼和压力波传播速度具有明显的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号