首页> 外文会议>International Symposium on Combustion; 20060805-11; University of Heidelberg(DE) >The prediction of flame heights and flame shapes of small fire whirls
【24h】

The prediction of flame heights and flame shapes of small fire whirls

机译:小火漩涡的火焰高度和火焰形状的预测

获取原文
获取原文并翻译 | 示例

摘要

This paper adds vortex flows around Burke-Schumann diffusion flames to predict the flame heights and the flame shapes of small fire whirls. The resulting model matches the measurements of methanol flames in a previous laboratory experiment and the results of numerical calculations in this paper. Burgers Vortex is assumed inside the vortex core radius, while ideal flow is assumed outside the vortex core radius. The ideal flow is corrected for the viscosity changes inside and outside the flame. If the two vortices are combined, they can be approximated as a Sullivan Vortex. Both the experiments and the numerical calculations show that vortex flows stabilize the flame shape, allowing the flame height as defined in a regular diffusion flame to increase. In fact, regular diffusion flames chop off unburned fuel to form separate plumes. With vortex flow, the flame stretches as if the diffusion rate had been reduced. We adjust Roper's flame height equation to account for the vortex flow and find that the flame height depends on the volume fuel rate and the vortex core radius. If more flows than that required to stabilize the flame were supplied, the radial flows start reducing the flame diameter near the pan, which in turn is balanced by an increase in the volume fuel rate. In the experiment, a balance between the flame temperature, the volume fuel rate, and the flame shape explains why the flame height stops increasing with vortex flows after a fire whirl is generated. In the numerical calculations, we find that the temperature gradient above the port, which controls the fuel evaporation rate, increases with the vortex flows.
机译:本文增加了Burke-Schumann扩散火焰周围的涡流,以预测火焰高度和小火漩涡的火焰形状。所得模型与先前实验室实验中甲醇火焰的测量结果和本文数值计算的结果相匹配。假设Burgers Vortex位于涡旋核心半径之内,而理想流动假定位于涡旋核心半径之外。针对火焰内部和外部的粘度变化校正了理想流量。如果将两个涡旋组合,则可以将它们近似为Sullivan涡旋。实验和数值计算均表明,涡流使火焰形状稳定,从而使规则扩散火焰中定义的火焰高度增加。实际上,规则的扩散火焰会切断未燃烧的燃料,形成单独的烟羽。随着涡流,火焰像扩散速率降低一样伸展。我们调整了Roper的火焰高度方程,以解决涡流问题,发现火焰高度取决于体积燃料率和涡旋芯半径。如果提供的流量超过了稳定火焰所需的流量,则径向流量将开始减小锅附近的火焰直径,进而通过增加体积燃料费率来平衡。在实验中,火焰温度,燃料体积率和火焰形状之间的平衡解释了为什么在产生火涡旋后,火焰高度不再随涡流而停止增加。在数值计算中,我们发现,控制燃料蒸发速率的端口上方的温度梯度随涡流而增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号