首页> 外文会议>International Symposium on Combustion; 20060805-11; University of Heidelberg(DE) >Computational and experimental study of a forced, time-dependent, methane-air coflow diffusion flame
【24h】

Computational and experimental study of a forced, time-dependent, methane-air coflow diffusion flame

机译:甲烷,空气同流强迫燃烧的时间依赖性的计算和实验研究

获取原文
获取原文并翻译 | 示例

摘要

Forced, time-varying flames are laminar systems that help bridge the gap between laminar and turbulent combustion. In this study, we investigate computationally and experimentally the structure of a periodically forced, axisymmetric laminar methane-air diffusion flame in which a cylindrical fuel jet is surrounded by a coflowing oxidizer jet. The flame is forced by imposing a sinusoidal modulation on the steady fuel flow rate. Rayleigh and spontaneous Raman scattering are used to generate the temperature and major species profiles. Particle image velocimetry is used to determine the magnitude of the velocity at the exit of the burner and the phase of the forcing modulation. CH* flame emission measurements are used to provide an indication of the overall flame shape. Computationally, we solve the transient equations for the conservation of total mass, momentum, energy, and species mass with detailed transport and finite rate chemistry submodels. The governing equations are written using a modified vorticity-velocity formulation and are solved on an adaptively refined grid using implicit time stepping and Newton's method nested with a Bi-CGSTAB iterative linear system solver. Results of the study include an investigation of the start-up features of the time-dependent flames and the time it takes for initial transients to dissipate. We include a detailed description of the fluid dynamic-thermochemical structure of the flame at a 20 Hz forcing frequency for both 30% and 50% sinusoidal velocity perturbations. Comparisons of experimentally determined and calculated temperature, CO and H_2O mole fraction profiles provide verification of the accuracy of the model.
机译:强迫时变火焰是层流系统,可帮助弥合层流与湍流燃烧之间的间隙。在这项研究中,我们通过计算和实验研究周期性强迫的轴对称层状甲烷-空气扩散火焰的结构,其中圆柱形燃料射流被同流氧化剂射流包围。通过对稳定的燃料流量施加正弦调制来强制火焰。瑞利和自发的拉曼散射被用来产生温度和主要种类的分布图。粒子图像测速仪用于确定燃烧器出口处的速度大小和强制调制的相位。 CH *火焰排放量测量值用于提供整体火焰形状的指示。通过计算,我们使用详细的运输和有限速率化学子模型来求解总质量,动量,能量和物种质量守恒的暂态方程。控制方程式使用改进的涡度-速度公式编写,并使用隐式时间步长和牛顿法嵌套在Bi-CGSTAB迭代线性系统求解器上,在自适应细化网格上求解。研究结果包括调查随时间变化的火焰的启动特征以及消散初始瞬变所花费的时间。我们将详细介绍火焰在20 Hz强迫频率下对30%和50%正弦速度扰动的流体动态热化学结构。实验确定和计算的温度,CO和H_2O摩尔分数分布图的比较提供了模型准确性的验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号