【24h】

Designing photonic crystals

机译:设计光子晶体

获取原文
获取原文并翻译 | 示例

摘要

The propagation of waves in periodic systems has been investigated since at least the 19th century, when Floquet studied periodic perturbations to planetary motion. The importance and ubiquity of periodic media in many different sub-areas of physics has resulted in the development of independent theories each with its own special flavour. Obvious examples are X-ray diffraction in crystals, electronic band structure, phonon propagation in crystals, acousto-optic diffraction, volume holography, distributed feedback lasers, fibre Bragg gratings, photonic crystal structures on two-dimensional thin-film waveguides and ― most topically― photonic band gap materials. The theories used in each of these fields developed from different approximations, influenced by experimental parameters. For example, in X-ray diffraction the refractive index modulation is very small and the scattering weak, so that single-scattering theories are usually adequate, leading via the first Born approximation to the well-known Bragg conditions. In thick crystals, however, it is essential to take account of multiple scattering, as explained in the early work of Darwin and Ewald. The result became the celebrated dynamical theory of X-ray diffraction, which led to a very beautiful series of experiments oh thick crystals where the roles of group and phase velocity ― and Pendel-loesung fringes (related to photonic Bloch wave interference discussed in subsect. 3.2)? Were highlighted . Bloch's band theory of electrons in crystals was developed to treat a very different case ― when the scattering strength of each unit cell is very high. This led via a very different set of approximations to a theory couched in terms of electronic states rather than the propagation of waves. Jumping ahead, work at the beginning of the 1980s used the tools of photonic band structure to interpret effects seen in thin-film photonic crystal waveguides and to design working devices based on the dispersion of guided photonic Bloch waves.
机译:至少从19世纪开始,当Floquet研究了行星运动的周期性扰动以来,就研究了波在周期性系统中的传播。周期性介质在物理学的许多不同子领域中的重要性和普遍性导致了独立理论的发展,每个独立理论都有其独特的风格。明显的例子是晶体中的X射线衍射,电子带结构,晶体中的声子传播,声光衍射,体积全息术,分布式反馈激光器,光纤布拉格光栅,二维薄膜波导上的光子晶体结构,以及-最局部的―光子带隙材料。受实验参数的影响,这些领域中每个领域使用的理论都是从不同的近似值发展而来的。例如,在X射线衍射中,折射率调制非常小,而散射较弱,因此单散射理论通常是足够的,从而通过第一个Born逼近导致众所周知的布拉格条件。但是,在厚晶体中,如达尔文和埃瓦尔德的早期工作中所述,必须考虑多重散射。结果成为著名的X射线动力学理论,引发了一系列非常美丽的实验,包括厚晶体,其中基团和相速度的作用-和Pendel-loesung条纹(与在本节中讨论的光子Bloch波干涉有关)。 3.2)?被突出显示。 Bloch晶体中电子的能带理论被开发来处理非常不同的情况-当每个晶胞的散射强度很高时。通过一组非常不同的近似值,得出了一种基于电子状态而非波传播的理论。向前迈进,1980年代初的工作使用光子能带结构的工具来解释在薄膜光子晶体波导中看到的效应,并基于被引导的光子Bloch波的色散设计工作装置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号