首页> 外文会议>International Nitrogen Conference; 20041012-16; Nanjing(CN) >INPUT LEVEL, CROPPING DIVERSITY AND CROP SPECIES EFFECTS ON NITRATE-N AND EXTRACTABLE P IN SOIL AFTER 8 YEARS
【24h】

INPUT LEVEL, CROPPING DIVERSITY AND CROP SPECIES EFFECTS ON NITRATE-N AND EXTRACTABLE P IN SOIL AFTER 8 YEARS

机译:8年后输入水平,耕作多样性和作物物种对土壤硝态氮和可提取磷的影响

获取原文
获取原文并翻译 | 示例

摘要

A field experiment was established in 1995 on a Dark Brown loam soil at Scott, Saskatchewan, Canada to determine the influence of input level, cropping diversity and crop species on the distribution of nitrate-N and extractable P in the soil profile. The treatments included three input levels (organic - ORG, reduced - RED and high - HIGH), three cropping diversities (low diversity - LOW, diversified annual grains - DAG, and diversified annual and perennials - DAP) and six crop phases [fallow (tillage-fallow or chem-fallow), green manure (lentil -Lens culinaris Medicus or sweet clover - Melilotus officinalis (L.) Lam), spring wheat (Triticum aestivum L.), canola (Brassica napus L. and B. rapa L), mustard (Brassica juncea L.), fall rye (Secede cereale L.), field pea (Pisum sativum L.), spring barley (Hordeum vulgare L.), flax (Linum usitatissimum L.), oats (Avena sativa L.) and bromegrass (Bromus inermis Leyss)-alfalfa (Medicago sativa Leyss) mixture hay]. The second 6-year rotation cycle started in 2001 growing season. Soil was sampled from the 0-15, 15-30, 30-60 and 60-90 cm depths in each crop phase in October, 2002. Accumulation and distribution of nitrate-N in soil varied with input level, cropping diversity and crop species. Amount of nitrate-N in soil was usually greater at HIGH input than at ORG or RED input, especially under LOW cropping diversity. There was some downward movement of nitrate-N in the soil profile. In LOW cropping diversity, nitrate-N in soil was highest after GM/F2 and lowest after mustard. In DAG cropping diversity, nitrate-N in soil was highest after wheat in ORG and RED inputs, after flax in HIGH input, and lowest after mustard in ORG input and after barley in RED and HIGH inputs. In DAP cropping diversity, nitrate-N in soil was highest after mustard (followed very closely by barley) in ORG input and after wheat in RED and HIGH inputs, and lowest after hay in all input levels. In some instances, soil under ORG input had greater nitrate-N than the soil under RED input. This was most likely because of relatively lower extractable P in soil for optimum crop growth under ORG input compared to RED input. HIGH or RED inputs tended to have greater extractable P in the 0-15 cm layer than ORG input, but cropping diversity had no effect on extractable P in soil. In conclusion, combination of HIGH input and LOW cropping diversity had higher nitrate-N in soil than the corresponding treatments. The findings suggest that at this site there is little potential for bringing P from subsoil to the surface by using taproot crops, because the subsoil is extremely low in available P. This also suggests that if surface and sub-soil are low in available P or other nutrients, it may not be possible to sustain high crop yields under organic farming systems without using external nutrient sources.
机译:1995年在加拿大萨斯喀彻温省斯科特市的黑褐色壤土上建立了田间试验,以确定投入水平,作物多样性和作物种类对土壤剖面中硝态氮和可萃取磷分布的影响。处理包括三个投入水平(有机-ORG,减少-RED和高-HIGH),三个作物多样性(低多样性-LOW,年度谷物多样化-DAG和年度和多年生植物多样化-DAP)和六个作物阶段[休耕期(耕作法或化学法休耕法,绿肥(小扁豆-lenina culinaris Medicus或甜三叶草-Melilotus officinalis(L.)Lam),春小麦(Triticum aestivum L.),双低油菜籽(Brassica napus L.和B. rapa L ),芥末(Brassica juncea L.),秋天黑麦(Secede graine L.),豌豆(Pisum sativum L.),春季大麦(Hordeum vulgare L.),亚麻(Linum usitatissimum L.),燕麦(Avena sativa L 。)和无芒雀麦(Bromus inermis Leyss)-苜蓿(Medicago sativa Leyss)干草]。第二个为期6年的轮换周期始于2001年的生长季节。在2002年10月的每个作物阶段,分别从0-15、15-30、30-60和60-90厘米深度取样土壤。土壤中硝态氮的积累和分布随投入水平,作物多样性和作物种类而变化。 。在高投入条件下,土壤中的硝态氮含量通常比在ORG或RED投入条件下要大,尤其是在低种植多样性条件下。土壤剖面中硝态氮的向下移动。在低作物多样性中,GM / F2处理后土壤中的硝态氮最高,而芥菜处理后最低。在DAG作物的多样性中,土壤中的硝态氮在小麦输入ORG和RED之后最高,在亚麻输入HIGH之后,在ORG输入之后是芥末,在RED和HIGH输入之后则在大麦之后最低。在DAP作物多样性中,在ORG输入中芥末(紧随大麦之后),在RED和HIGH输入中小麦之后,土壤中的硝态氮最高,而在所有输入水平中仅次于干草。在某些情况下,ORG输入下的土壤比RED输入下的土壤具有更高的硝态氮。这很可能是因为在ORG投入下,土壤中的可提取P相对于RED投入而言相对较低,以实现最佳作物生长。与ORG输入相比,高或红色输入趋于在0-15 cm层中具有较高的可萃取P,但种植多样性对土壤中的可萃取P没有影响。总之,高投入和低作物多样性相结合的土壤中的硝态氮含量高于相应的处理方法。研究结果表明,在该地点使用主根作物将磷从底土带到地表的可能性很小,因为底土中的有效磷极低。这也表明如果地表土壤和底土中的有效磷低,或其他营养素,如果不使用外部营养素源,在有机耕作制度下可能无法维持高作物产量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号