【24h】

Bidimensional Packing by Bilinear Programming

机译:通过双线性规划进行二维包装

获取原文
获取原文并翻译 | 示例

摘要

We consider geometric problems in which rectangles have to be packed in (identical) squares, that turn out to be very hard in practice and for which ILP formulations in which variables specify the coordinates in the packing perform very poorly. While most methods developed until the end of last century are based on simple geometric considerations, a recent landmark result of Fekete and Schepers suggests to put these geometric aspects aside and use the most advanced tools for the 1-dimensional case. In this paper we make additional progress in this direction, especially on the basic question "Does a given set of rectangles fit in a square?", that turns out to be the bottleneck of all the approaches known. Given a set of rectangles and the associated convex hull of the incidence vectors of rectangle subsets that fit in a square, we derive a wide class of valid inequalities for this convex hull from a complete description of the two knapsack polytopes associated with the widths and the heights of the rectangles, respectively. Additionally, we illustrate how to solve the associated separation problem as a bilinear program, for which we develop a solution method that turns out to be fast in practice, and show that integer solutions that satisfy all these inequalities generally correspond to vertices of the original convex hull. The same tools are used to derive lower bounds for the 2-dimensional bin packing problem, corresponding to the determination of an optimal pair of so-called dual feasible functions, that in many cases equal the lower bounds obtained by the customary set covering formulation (for which column generation is very hard) being computable within times that are orders of magnitude smaller. All our results extend immediately to the general problem of packing d-dimensional parallelepipeds in hypercubes.
机译:我们考虑了几何问题,其中必须将矩形打包成(相同的)正方形,这在实践中非常困难,而对于那些用变量指定打包中的坐标的ILP公式,其性能却非常差。虽然直到上世纪末开发的大多数方法都是基于简单的几何考虑,但Fekete和Schepers的最新里程碑结果建议将这些几何方面放在一边,并使用最先进的工具处理一维情况。在本文中,我们在此方向上取得了其他进展,特别是在“给定的一组矩形是否适合正方形?”这一基本问题上,事实证明这是所有已知方法的瓶颈。给定一组矩形和适合正方形的矩形子集的入射向量的相关凸包,我们从与宽度和宽度相关的两个背包多边形的完整描述中得出该凸包的一类有效不等式。矩形的高度。此外,我们以双线性程序说明了如何解决相关的分离问题,为此我们开发了一种在实践中证明很快的求解方法,并表明满足所有这些不等式的整数解通常对应于原始凸点的顶点船体。使用相同的工具来得出二维装箱问题的下界,对应于确定所谓的对偶可行函数的最佳对,在许多情况下,它们等于由常规集合覆盖公式获得的下界(因此,列生成非常困难)可以在更短几个数量级的时间内进行计算。我们所有的结果都立即扩展到在超立方体中包装d维平行六面体的一般问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号