【24h】

Towards an austenite decomposition model for TRIP steels

机译:建立TRIP钢的奥氏体分解模型

获取原文
获取原文并翻译 | 示例

摘要

The current status of developing a fundamental model for describing the overall austenite decomposition kinetics to ferrite and carbide-free bainite in low carbon TRIP steels alloyed with Mn and Si is reviewed. For ferrite growth, a model is proposed where both interface and carbon diffusion-controlled ferrite formation are considered in a mixed-mode approach. The kinetic model is coupled with Thermocalc to obtain necessary thermodynamic information. Spherical geometry with an outer ferrite shell is assumed to capture in a simple way the topological conditions for growth. The mixed-mode modelling philosophy has been identified to permit a rigorous incorporation of the solute drag effect of substitutional alloying elements, in particular Mn. The Purdy-Brechet solute drag theory is adopted to characterize the interaction of Mn with the moving austenite-ferrite interface. The challenges of quantifying the required solute drag parameters are discussed with an emphasis on a potential solute drag interaction of Mn and Si. The model is extended to non-isothermal processing paths to account for continuous and stepped cooling occurring on the run-out table of a hot strip mill or on a continuous annealing line. The transformation start temperature during cooling is predicted with a model combining nucleation and early growth which had previously been validated for conventional low carbon steels. The overall model is evaluated by comparing the predictions with experimental data for the ferrite growth kinetics during continuous cooling of a classical TRIP steel with mass contents of 0.19% C, 1.49% Mn and 1.95% Si. Extension of the model to include bainite formation remains a challenge. Both diffusional and displacive model approaches are discussed for the formation of carbide-free bainite. It is suggested to develop a combined nucleation and growth model which would enable to capture a potential transition from a diffusional to a displacive transformation mode with decreasing temperature.
机译:综述了开发基本模型的现状,该模型描述了在锰和硅合金化的低碳TRIP钢中,奥氏体分解成铁素体和无碳化物的贝氏体的整体动力学。对于铁素体的生长,提出了一个模型,其中以混合模式方法同时考虑了界面和碳扩散控制的铁素体形成。将动力学模型与Thermocalc耦合以获得必要的热力学信息。假定具有外部铁氧体壳的球形几何形状以简单的方式捕获了增长的拓扑条件。已经确定了混合模式建模原理,可以严格纳入替代合金元素(特别是Mn)的溶质拖曳效应。采用Purdy-Brechet溶质阻力理论来表征Mn与运动的奥氏体-铁素体界面的相互作用。讨论了量化所需溶质阻力参数的挑战,重点是锰和硅的潜在溶质阻力相互作用。该模型被扩展到非等温处理路径,以解决在热轧机的跳动台上或在连续退火线上发生的连续和逐步冷却。使用结合了成核和早期生长的模型来预测冷却过程中的转变开始温度,该模型先前已针对常规低碳钢进行了验证。通过将预测值与质量为0.19%C,1.49%Mn和1.95%Si的经典TRIP钢连续冷却期间铁素体生长动力学的实验数据进行比较,可以评估整体模型。扩展模型以包括贝氏体形成仍然是一个挑战。讨论了扩散模型和置换模型方法对无碳化物贝氏体形成的影响。建议开发一种成核和生长相结合的模型,该模型将能够捕获随着温度降低从扩散转变为位移转变模式的潜在转变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号