首页> 外文会议>International Conference on Greenhouse Gas Control Technologies; 20040905-09; Vancouver(CA) >TOWARDS A METHODOLOGY FOR TOP SEAL EFFICACY ASSESSMENT FOR UNDERGROUND CO_2 STORAGE
【24h】

TOWARDS A METHODOLOGY FOR TOP SEAL EFFICACY ASSESSMENT FOR UNDERGROUND CO_2 STORAGE

机译:提出了一种用于地下CO_2储存的最高密封效率评估的方法

获取原文
获取原文并翻译 | 示例

摘要

Quantitative assessment of leakage risk and leakage rates from planned underground CO_2 storage sites is a primary requirement for public acceptance, formal site approval, and credit for stored CO_2 quantities under CO_2 emission schedules. Leakage through the top seal can basically occur by three processes: (ⅰ) diffusion through the pore system, (ⅱ) capillary transport through the pore system of the seal, (ⅲ) multiphase migration through a (micro-) fracture network; or by a combination of any of these. Diffusion results in very low leakage rates; maximum rates typically attained after several 100 000 years, being in the ppm range. Multiphase capillary migration is characterized by two main parameters: capillary breakthrough pressure and effective permeability to the non-wetting phase (CO_2). The dependence of effective permeability to CO_2 on capillary pressure, which in turn is a function of CO_2 column height, is hysteretic in character with generally higher effective permeability during pressure decrease (column shrinkage) than during increase, at the same capillary pressure (CO_2 column height). Leakage is likely to stop at approximately 20 to 50% of the breakthrough pressure as suggested by the 'snap-off' theory by Vassenden et al. (2003). Capillary breakthrough pressure and effective permeability is very difficult to measure for low-permeable rocks. A recently presented method by Hildenbrand et al. (2002) shows promising results, but their data require cautious re-interpretation prior to application to CO_2-storage cases. Time-delay effects may imply that their 'maximum effective permeability' at laboratory conditions is not the maximum attainable in nature and in CO_2 storage reservoirs. Their 'minimum capillary displacement pressure' may rather be a 'snap-off pressure than a breakthrough pressure, the latter being higher by a factor of 2 to 5. Detection and prediction of the presence of microfractures, which have much larger permeability than the rock matrix, is difficult. Simulation techniques can, however, be used to estimate the likelihood for their generation by burial-induced overpressure. In general, prediction of fluid-flow parameters for the seal to CO_2 storage sites is a challenge due to the probable low data coverage. Reliable extrapolation of such parameters from punctual data at wells across the space above the whole storage site requires considerable improvements of the understanding of depositional processes of fine-grained rocks.
机译:计划中的地下CO_2储存场地的泄漏风险和泄漏率的定量评估是公众接受,正式场地批准以及在CO_2排放时间表下储存的CO_2数量的信用的主要要求。顶部密封件的渗漏基本上可以通过三个过程发生:(ⅰ)通过孔隙系统的扩散,(ⅱ)通过密封件孔隙系统的毛细管传输,(ⅲ)通过(微)裂缝网络的多相迁移;或结合使用以上任何一种。扩散导致泄漏率非常低;通常在几十万年后达到的最大速率在ppm范围内。多相毛细管迁移的特征在于两个主要参数:毛细管穿透压力和对非润湿相(CO_2)的有效渗透率。在相同的毛细管压力(CO_2色谱柱)下,有效渗透率对CO_2的依赖性(这是CO_2色谱柱高度的函数)具有滞后性,在降压(色谱柱收缩)过程中有效渗透率通常比在升高过程中更高。高度)。根据Vassenden等人的“捕捉”理论,泄漏可能会在突破压力的大约20%至50%处停止。 (2003)。对于低渗透率的岩石,毛细管渗透压力和有效渗透率很难测量。 Hildenbrand等人最近提出的方法。 (2002年)显示出令人鼓舞的结果,但在应用到CO_2储存案例之前,他们的数据需要谨慎的重新解释。时滞效应可能暗示它们在实验室条件下的“最大有效渗透率”并不是自然界和在CO_2储集层中可获得的最大渗透率。它们的“最小毛细位移压力”可能是“压裂压力”,而不是“突破压力”,突破压力要高2到5倍。检测和预测微裂缝的存在,微裂缝的渗透性比岩石大得多矩阵,很难。但是,可以使用模拟技术来估计由于埋藏引起的超压而产生它们的可能性。通常,由于可能的低数据覆盖率,预测密封到CO_2储存位点的流体流量参数是一个挑战。从整个存储站点上方空间上的井中的井点数据中可靠地推断出此类参数,需要对细粒岩石沉积过程的理解有相当大的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号