首页> 外文会议>International Conference on Greenhouse Gas Control Technologies; 20040905-09; Vancouver(CA) >MODELING THE LONG-TERM ISOLATION PERFORMANCE OF NATURAL AND ENGINEERED GEOLOGIC CO_2 STORAGE SITES
【24h】

MODELING THE LONG-TERM ISOLATION PERFORMANCE OF NATURAL AND ENGINEERED GEOLOGIC CO_2 STORAGE SITES

机译:天然和工程地质CO_2存储站点的长期隔离性能建模

获取原文
获取原文并翻译 | 示例

摘要

Long-term cap rock integrity represents the single most important constraint on the long-term isolation performance of natural and engineered geologic CO_2 storage sites. CO_2 influx that forms natural accumulations and CO_2 injection for EOR/sequestration or saline-aquifer disposal both lead to concomitant geochemical alteration and geomechanical deformation of the cap rock, enhancing or degrading its seal integrity depending on the relative effectiveness of these interdependent processes. This evolution of cap-rock permeability can be assessed through reactive transport modeling, an advanced computational method based on mathematical models of the coupled physical and chemical processes catalyzed by the influx event. Using our reactive transport simulator (NUFT), supporting geochemical databases and software (SUPCRT92), and distinct-element geomechanical model (LDEC), we have shown that influx-triggered mineral dissolution/precipitation reactions within typical shale cap rocks continuously reduce microfrac apertures, while pressure and effective-stress evolution first rapidly increase then slowly constrict them. For a given shale composition, the extent of geochemical enhancement is nearly independent of key reservoir properties (permeability and lateral continuity) that distinguish saline aquifer and EOR/sequestration settings and CO_2 influx parameters (rate, focality, and duration) that distinguish engineered disposal sites and natural accumulations, because these characteristics and parameters have negligible impact on mineral reaction rates. In contrast, the extent of geomechanical degradation is highly dependent on these reservoir properties and influx parameters, because they effectively dictate magnitude of the pressure perturbation. Specifically, initial geomechanical degradation has been shown inversely proportional to reservoir permeability and lateral continuity and proportional to influx rate. As a result, while the extent of geochemical alteration is nearly independent of filling mode, that of geomechanical deformation is significantly more pronounced during engineered injection. This discrepancy limits the extent to which natural CO_2 reservoirs and engineered disposal sites can be considered analogous, and further suggests that the secure cap rock of a given natural CO_2 accumulation may be incapable of providing an effective seal in the context of an engineered injection. A new conceptual framework reveals that ultimate counterbalancing of opposing geochemical and geomechanical effects is feasible, which suggests that shale cap rocks may evolve into effective hydrodynamic seals-in both natural and engineered storage sites-as a function of progressive geochemical alteration that attends some degree of initial CO_2 leakage.
机译:长期盖层完整性代表着对自然和工程地质CO_2封存地点的长期隔离性能的最重要限制。形成自然堆积的CO_2涌入和用于EOR /封存或盐水层处置的CO_2注入均导致盖层的伴随地球化学变化和地质力学变形,这取决于这些相互依赖的过程的相对有效性,从而增强或降低盖层的完整性。可以通过反应输运模型评估盖层渗透率的这种变化,这是一种基于涌入事件催化的物理和化学过程耦合的数学模型的先进计算方法。使用我们的反应运输模拟器(NUFT),支持地球化学数据库和软件(SUPCRT92)以及独特元素地质力学模型(LDEC),我们已经证明,典型的页岩盖岩中涌入触发的矿物溶解/沉淀反应会不断减小微裂隙孔径,而压力和有效压力的演变首先迅速增加,然后缓慢收缩。对于给定的页岩成分,地球化学增强的程度几乎与关键的储层特性(渗透率和侧向连续性)无关,后者区分盐水层和EOR /固存设置,而CO_2入流参数(速率,焦点和持续时间)则与工程处置场所不同。和自然积累,因为这些特征和参数对矿物反应速率的影响可忽略不计。相反,地质力学退化的程度高度取决于这些储层特性和入流参数,因为它们有效地决定了压力扰动的幅度。具体而言,已显示出初始地质力学退化与储层渗透率和横向连续性成反比,与涌入速率成反比。结果,虽然地球化学变化的程度几乎与填充模式无关,但在工程注射过程中,地球力学变形的程度明显更为明显。这种差异限制了可以将天然CO_2储层和工程处置场所视为相似程度的程度,并且进一步表明,给定天然CO_2堆积的安全盖岩可能无法在工程注入的情况下提供有效的封闭作用。一个新的概念框架揭示了对付地球化学和地球力学作用的最终平衡是可行的,这表明页岩盖岩可能在自然和工程存储地点演化为有效的水动力密封,这是随着地球化学逐步变化而变化的函数,这种变化在一定程度上涉及最初的CO_2泄漏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号