首页> 外文会议>International Conference on Electrical, Electronics, and Optimization Techniques >Design and optimization of inter-coil insulation system of a Cast resin transformer using FEM
【24h】

Design and optimization of inter-coil insulation system of a Cast resin transformer using FEM

机译:基于有限元的浇铸树脂变压器线圈间绝缘系统设计与优化

获取原文

摘要

In this paper, a 400kVA, 11/0.433kV Cast resin transformer (CRT) insulation system is considered for optimization. Due to its numerous advantages, the design and manufacturing technology for CRT is demanding, which can only be fulfilled if the design and manufacturing is free from any defects. The reliability and life of the CRT is defined by the life of its insulation system which is again a function of thermal and electrical stresses. To meet the allowable criteria for temperature rise is relatively an easy task for design engineers. Thus, within a window of 30 years, the reliability and life of CRT remains the function of electrical stresses only. Any activity of partial discharge (PD) in solid insulation leads to degradation of the solid insulation and premature failure. In the event of PD, time to failure depends on PD energy, PD resistivity of the materials and dielectric gap. Optimization of electric field and ensuring a void-free insulation system is must to avoid the premature failure of CRT. The electric field in CRT; more specifically, in high voltage winding depends on the electrical stresses in inter-layer insulation and end insulation. Insulation between two layers of high voltage winding is termed as layer insulation, whereas insulation between coils of high voltage wingdings and insulation to earth is termed as end insulation. At microscopic level, turns per layer (differential turns), insulation thickness between layers, and conductor radius decides the electrical stresses. Whereas for end insulation, the spacing between coils and coil-to-earth potential is deciding factor for electrical stresses. This paper addresses the design and analysis of inter-coil insulation system with finite element method (FEM) using 2D-ElecNet software by Infolytica Corporation. This software can be used for all types of electrostatic and electromagnetic analysis.
机译:本文考虑采用400kVA,11 / 0.433kV的浇铸树脂变压器(CRT)绝缘系统进行优化。由于其众多的优势,CRT的设计和制造技术要求很高,只有在设计和制造没有任何缺陷的情况下才能实现。 CRT的可靠性和寿命取决于其绝缘系统的寿命,而绝缘系统的寿命又是热应力和电应力的函数。对于设计工程师来说,要满足温度上升的允许标准是相对容易的任务。因此,在30年之内,CRT的可靠性和使用寿命仅取决于电应力的作用。固体绝缘中的任何局部放电(PD)活动都会导致固体绝缘性能下降和过早失效。在发生PD的情况下,失效时间取决于PD能量,材料的PD电阻率和介电间隙。为了避免CRT提前失效,必须优化电场并确保无空隙的绝缘系统。 CRT中的电场;更具体地说,在高压绕组中,取决于层间绝缘和端部绝缘中的电应力。两层高压绕组之间的绝缘被称为层绝缘,而高压机翼线圈之间和与地的绝缘之间的绝缘被称为末端绝缘。在微观水平上,每层匝数(差分匝数),层之间的绝缘厚度以及导体半径决定了电应力。而对于端部绝缘,线圈之间的间距和线圈对地的电位是电应力的决定因素。本文使用Infolytica Corporation的2D-ElecNet软件,通过有限元方法(FEM)对线圈间绝缘系统进行设计和分析。该软件可用于所有类型的静电和电磁分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号