首页> 外文会议>International Conference on Advances in Engineering Structures, Mechanics amp; Construction; 20060514-17; Waterloo(CA) >STRATEGIES FOR COMPUTATIONAL EFFICIENCY IN CONTINUUM STRUCTURAL TOPOLOGY OPTIMIZATION
【24h】

STRATEGIES FOR COMPUTATIONAL EFFICIENCY IN CONTINUUM STRUCTURAL TOPOLOGY OPTIMIZATION

机译:连续结构拓扑优化中计算效率的策略

获取原文
获取原文并翻译 | 示例

摘要

A methodology of enhanced computational efficiency is presented for continuum topology optimization of sparse structural systems. Such systems are characterized by the structural material occupying only a small fraction of the structure's envelope volume. When modeled within a continuum mechanics and topology optimization framework such structures require models of very high refinement which is computationally very expensive. The methodology presented herein to deal with this issue is based on the idea of starting with a relatively coarse mesh of low refinement and employing a sequence of meshes featuring progressively greater degrees of uniform refinement. One starts by solving for an initial approximation to the final material layout on the coarse mesh. This design is then projected onto the next finer mesh in the sequence, and the material layout optimization process is continued. The material layout design from the second mesh can then be projected onto the third mesh for additional refinement, and so forth. The process terminates when an optimal design of sufficient sparsity, and sufficient mesh resolution is achieved. Within the proposed methodology, additional computational efficiency is realized by using a design-dependent analysis problem reduction technique. As one proceeds toward sparse optimal designs, very large regions of the structural model will be devoid of any structural material and hence can be excluded from the structural analysis problem resulting in great computational efficiency. The validity and performance characteristics of the proposed methodology are demonstrated on three different problems, two involving design of sparse structures for buckling stability, and the third involving design of a hinge-free gripper compliant mechanism.
机译:提出了一种提高计算效率的方法,用于稀疏结构系统的连续体拓扑优化。这样的系统的特征在于结构材料仅占据结构的包络体积的一小部分。当在连续力学和拓扑优化框架中建模时,这种结构需要非常高的精炼模型,这在计算上非常昂贵。本文中提出的用于解决该问题的方法基于以下思想:从相对较细的低精细网格开始,并采用一系列具有逐渐提高的均匀精细度的网格。首先从求解粗网格上最终材料布局的初始近似开始。然后将此设计投影到序列中的下一个更细的网格上,并继续进行材料布局优化过程。然后,可以将第二个网格的材质布局设计投影到第三个网格上,以进行其他改进,依此类推。当具有足够的稀疏性和足够的网格分辨率的最佳设计时,该过程终止。在所提出的方法中,通过使用依赖于设计的分析问题减少技术来实现额外的计算效率。随着人们朝着稀疏的最佳设计前进,结构模型的很大区域将没有任何结构材料,因此可以从结构分析问题中排除,从而导致很高的计算效率。在三个不同的问题上论证了所提出方法的有效性和性能特征,两个问题涉及为保持屈曲稳定性而设计的稀疏结构,以及第三个问题涉及无铰链夹持器顺应机构的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号