首页> 外文会议>International Astronautical Congress(IAC2006); 20061002-06; Valencia(ES) >ARGOSY - ARchitecture for Going to the Outer solar SYstem
【24h】

ARGOSY - ARchitecture for Going to the Outer solar SYstem

机译:ARGOSY-外太阳能系统的架构

获取原文
获取原文并翻译 | 示例

摘要

All solar system objects that have been reached by robotic spacecraft, or can be reached, are, in principle, targets for human in situ exploration. The Moon and Mars have been the primary targets due to relative accessibility and relatively benign environments. ARGOSY - ARchitecture for Going to the Outer solar SYstem, addresses anew the problem of supporting human exploration to Jupiter and the other outer planets. The ARGOSY architecture approach is scalable in size and power, so that increasingly distant destinations, the systems of the outer planets Jupiter, Saturn, Uranus, and Neptune, can be reached with the same crew size and time requirements. One-way journeys (inbound or outbound) are required to last no more than two years, to limit exposure to galactic cosmic ray flux, and use no more than six crew members, to limit the mass of required expendables. To enable such visions, achievable technologies with appropriate margins must be used to construct a viable technical approach at the systems level. We focus on thermal neutron reactors for reasons of technical maturity, safety, and reliability. The power system, in turn, drives high-power plasma thrusters that can use water from the target systems for propellant. A new class of extremely heavy lift launch vehicles (EHLLVs), dubbed Supernova, is an integral part of the architecture required to place the ARGOSY vehicle in cis-lunar space. Crew transport to and from that vehicle relies upon Block III of the Crew Exploration Vehicle (CEV) as defined in the Exploration Systems Architecture Study (ESAS), with transport capabilities to and from the Earth's surface of up to six astronauts. This approach aims to determine an achievable architecture that can be costed with confidence, even though that cost will be high, and potentially implemented before the close of the 21st century. ARGOSY thus takes the first conceptual step past Mars in addressing the implementation of the most difficult part of the Vision for Space Exploration: how to "extend human presence across the solar system."
机译:原则上,机器人航天器已经到达或可以到达的所有太阳系物体都是人类原位探索的目标。由于相对可及性和相对良性的环境,月球和火星已成为主要目标。机体-进入外太阳系的体系结构,新解决了支持对木星和其他外行星进行人类探索的问题。 ARGOSY架构方法可在规模和功率上进行扩展,因此,在相同的乘员规模和时间要求下,越来越远的目的地,外行星木星,土星,天王星和海王星的系统也可以达到。单程(入站或出站)旅行不得超过两年,以限制暴露于银河系宇宙射线通量,并使用不超过六名机组人员,以限制所需消耗品的质量。为了实现这样的愿景,必须使用具有适当边际的可实现技术来在系统级别构建可行的技术方法。由于技术成熟,安全和可靠,我们专注于热中子反应堆。动力系统进而驱动大功率等离子推进器,该等离子推进器可以将目标系统中的水用于推进剂。新型超重型运载火箭(EHLLV)被称为超新星(Supernova),是将ARGOSY运载工具放置在顺月空间中所需的架构的组成部分。乘员往返该车的运输依赖于勘探系统架构研究(ESAS)中定义的乘员探索车(CEV)的III区,具有往返六名宇航员的地面运输能力。这种方法旨在确定可实现的架构,即使该成本很高,也可以放心使用,并且有可能在21世纪末实现。因此,ARGOSY在解决“空间探索愿景”最困难的部分的实施方面迈出了迈尔斯迈出的第一步概念性步骤:如何“将人类的存在扩展到整个太阳系中”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号