首页> 外文会议>International Conference Mixed Design of Integrated Circuits Systems >Hardware-accelerated reconstruction of compressed neural signals based on inpainting
【24h】

Hardware-accelerated reconstruction of compressed neural signals based on inpainting

机译:基于修复的硬件加速压缩神经信号重构

获取原文

摘要

In this paper the first low-latency architecture design and hardware implementation for structure-based inpainting to detect and complete isophotes in brain activity recording is presented. This novel mask-based compression and inpainting-based reconstruction methodology for correlated neural signals is especially important for the realization of implantable neural measurement systems (NMS) due to restrictions in terms of area and energy. The data compression is obtained by on/off controlling of the recording electrodes on implant side. The low-latency and parallel architecture design is based on a synchronous Moore-FSM for 16 bits inputs. It requires only 8 cycles to compute the inpainting-based detection and completion of isophotes. Because of the error-robust inpainting recovery procedure, small accuracy differences between the simulation and measurement results on a Xilinx DS312 Spartan-3E FPGA are negligible. The proposed hardware implementation on logical and physical 350nm CMOS reaches a clock frequency of 78.452 MHz, which leads to a throughput of 653 766 parallel inpainting-based isophote computations per second.
机译:本文提出了用于基于结构的修复以检测和完成脑活动记录中的等渗线的第一个低延迟架构设计和硬件实现。由于面积和能量的限制,这种用于相关神经信号的基于掩模的压缩和基于修复的重建方法对于实现植入式神经测量系统(NMS)尤其重要。通过对植入侧的记录电极进行开/关控制来获得数据压缩。低延迟和并行体系结构设计基于用于16位输入的同步Moore-FSM。它仅需要8个周期即可计算基于修补的等渗线检测和完成。由于错误修复程序的健壮性,Xilinx DS312 Spartan-3E FPGA上的仿真结果与测量结果之间的微小精度差异可以忽略不计。在逻辑和物理350nm CMOS上提出的硬件实现方案达到了78.452 MHz的时钟频率,这导致每秒653 766个基于并行修复的等渗线计算的吞吐量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号