【24h】

Deep Learning vs. Classical Machine Learning: A Comparison of Methods for Fluid Intelligence Prediction

机译:深度学习与经典机器学习:流体智能预测方法的比较

获取原文

摘要

Predicting fluid intelligence based on T1-weighted magnetic resonance imaging (MRI) scans poses several challenges, including developing an adequate data representation of three dimensional voxel data, extracting predictive information from this data representation, and devising a model that is able to leverage the predictive information. We evaluate two strategies for prediction of fluid intelligence given structural MRI scans acquired through the Adolescent Brain Cognitive Development (ABCD) Study: deep learning models trained on raw imagery and classical machine learning models trained on extracted features. Our best-performing solution consists of a classical machine learning model trained on a combination of provided brain volume estimates and extracted features. Specifically, a Gradient Boosting Regressor (GBR) trained on a PCA-reduced feature space produced the best performance (train MSE = 66.29, validation MSE = 70.16), surpassing regression models trained on the provided volume data alone, and 2D/3D Convolu-tional Neural Networks trained on various representations of imagery data. Nonetheless, these results remain slightly better than a mean prediction, suggesting that neither approach is capturing a high degree of variance in the data.
机译:基于T1加权磁共振成像(MRI)扫描预测流体智能提出了一些挑战,包括开发三维三维体素数据的足够数据表示,从该数据表示中提取预测信息以及设计一种能够利用预测数据的模型。信息。鉴于通过青少年脑认知发育(ABCD)研究获得的结构性MRI扫描,我们评估了两种预测流体智力的策略:在原始图像上训练的深度学习模型和在提取特征上训练的经典机器学习模型。我们性能最佳的解决方案包括经典机器学习模型,该模型在提供的大脑容量估计值和提取的特征的组合上经过训练。具体来说,在PCA减少的特征空间上训练的梯度提升回归(GBR)产生了最佳性能(训练MSE = 66.29,验证MSE = 70.16),超过了仅根据提供的体数据训练的回归模型和2D / 3D Convolu-国家神经网络接受了各种图像数据表示的培训。尽管如此,这些结果仍然比平均预测要好一些,这表明这两种方法都无法捕获数据的高度差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号