首页> 外文会议>International conference on fracture >On the Mechanism of Martensite Formation during Short Fatigue Crack Propagation in Austenitic Stainless Steel:Experimental Identification and Modelling Concept
【24h】

On the Mechanism of Martensite Formation during Short Fatigue Crack Propagation in Austenitic Stainless Steel:Experimental Identification and Modelling Concept

机译:奥氏体不锈钢短时疲劳裂纹扩展过程中马氏体形成的机理:实验识别与建模概念

获取原文

摘要

During fatigue of metastable austenitic steels,local plasticity is linked with the formation of martensite.It was shown that cubic a' martensite nucleates at slip band and 8 martensite intersection sites ahead of growing fatigue cracks.Since such intersections require the operation of alternate slip systems,martensite formation was found only for shear-controlled single-slip crack propagation (mode iD prevailing during the early propagation phase of microstructurally short fatigue cracks.Surprisingly,cracks were found not to initiate within martensitically transformed grains but by a fraction of 70% along twin boundaries.The extent of martensite formation ahead of a propagating crack increases with increasing crack length and eventually,gives rise to transformation-induced crack-closure effects.The interaction between the crack tip plasticity and the local microstructure was quantitatively analysed by automated electron back-scatter diffraction (EBSD) in the scanning electron microscope (SEM) applied to the electro-polished surfaces of fatigue specimens.Following a geometrical model for martensitic transformation,further analysis of the relevant fatigue mechanism became possible aiming to both mechanism-based life prediction and tailoring fatigue resistant microstructures.
机译:在亚稳态奥氏体钢的疲劳过程中,局部塑性与马氏体的形成有关。研究表明,立方a'马氏体在滑移带和8个马氏体相交点处在疲劳裂纹扩展之前发生了形核,因为这种相交需要操作交替的滑移系统,仅在剪切控制的单滑裂纹扩展中发现马氏体形成(模式iD在微观结构短疲劳裂纹的早期扩展阶段占主导地位。令人惊讶的是,发现裂纹不在马氏体相变晶粒内萌生,而是在70%的范围内出现)孪晶边界。扩展裂纹前的马氏体形成程度随裂纹长度的增加而增加,最终赋予相变诱发的裂纹闭合效应。裂纹尖端塑性与局部微观结构之间的相互作用通过自动电子反定量分析扫描电子显微镜中的散射散射(EBSD) e(SEM)应用于疲劳试样的电抛光表面。遵循用于马氏体相变的几何模型,针对基于机理的寿命预测和定制耐疲劳的微观结构,可以进一步分析相关的疲劳机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号