首页> 外文会议>Integrated photonics: Materials, devices, and applications III >Measuring life: sensors and analytics for precision medicine
【24h】

Measuring life: sensors and analytics for precision medicine

机译:测量寿命:精密医学的传感器和分析

获取原文
获取原文并翻译 | 示例

摘要

The first industrial revolution focused on machines, the second one was data-centric - a third revolution combining the power of devices and information has just started and transforms our understanding of life itself. Thereby novel sensors and networks from wearable biometric devices to lab-on-a-chip platforms for exploratory fundamental research on single-biomolecule characterization and design occupy a key role. In combination with recent advances in big data analytics for life sciences, healthcare and genomics such sensors are essential tools for moving from fast and cheap personalized DNA-sequencing via smart genomics towards one-off prevention and treatment plans. Replacing state-of-the-art, one-fits-all approaches, this paradigm shifting individual "assess & response" scheme commonly referred to as precision medicine merges biomedical engineering, systems biology, systems genomics, and information technology. Integrated sensors for isolating, investigating and eventually manipulating single biomolecules are important experimental tools for developing next-generation DNA-sequencing platforms and for conducting 'omics research which is a defining part of systems biology. In that context resistive pulse sensing has emerged as a powerful technology at the intersection of biotechnology and nanotechnology allowing electrical, label-free screening of biological compounds such as proteins or DNA with single-molecule, single-nucleotide and even single binding site resolution. Resistive pulse sensing technology has been at the center of recent commercial $100Ms investments in the next-generation DNA-sequencing sector. While next-generation sequencing platforms based on resistive pulse sensing techniques will mature further, the technology is also increasingly used for screening other biomolecules such as for example proteins. This allows for developing novel diagnostics and ultra-high throughput pre-clinical drug screening systems which might help to transform the pharma pipeline similarly to how the $1000-genome has revolutionized DNA-sequencing.
机译:第一次工业革命以机器为中心,第二次以数据为中心-结合设备和信息的力量的第三次革命刚刚开始,并且改变了我们对生活本身的理解。因此,从可穿戴生物识别设备到芯片实验室平台的新型传感器和网络,对单生物分子的表征和设计进行了探索性基础研究,发挥了关键作用。结合生命科学,医疗保健和基因组学领域大数据分析的最新进展,此类传感器是从通过智能基因组学进行快速,廉价的个性化DNA测序转向一次性预防和治疗计划的必不可少的工具。这种范式转移个体的“评估与响应”方案取代了最新的,万能的方法,通常被称为精密医学,它融合了生物医学工程,系统生物学,系统基因组学和信息技术。用于分离,研究和最终操纵单个生物分子的集成传感器是开发下一代DNA测序平台和进行“组学研究”(系统生物学的重要组成部分)的重要实验工具。在这种情况下,电阻式脉冲传感已成为一种强大的技术,已成为生物技术和纳米技术的交汇处,它可以对单分子,单核苷酸甚至单结合位点分辨率的蛋白质或DNA等生物化合物进行电无标记筛选。电阻脉冲传感技术一直是下一代DNA测序领域最近1亿美元商业投资的核心。尽管基于电阻式脉冲传感技术的下一代测序平台将进一步成熟,但该技术也越来越多地用于筛选其他生物分子,例如蛋白质。这允许开发新颖的诊断方法和超高通量的临床前药物筛选系统,这可能有助于转变制药管道,类似于1000美元基因组如何革新DNA测序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号