首页> 外文会议>Integrated optics: devices, materials, and technologies XXI >Ultra-low-power stress-optics modulator for microwave photonics
【24h】

Ultra-low-power stress-optics modulator for microwave photonics

机译:用于微波光子学的超低功率应力光学调制器

获取原文
获取原文并翻译 | 示例

摘要

In this work, we demonstrate the first stress-optic modulator in a silicon nitride-based waveguide platform (TriPleX) in the telecommunication C-band. In our stress-optic phase modulator the refractive index of the waveguiding materials is controlled by the stress-optic effect induced by actuating a 2 um thick PZT layer on top of the TriPleX waveguide geometry. The efficiency of the modulator is optimized by, amongst others, focusing the applied stress in the waveguide core region through a local increase of the top cladding. Using a Mach-Zehnder interferometer, we measured a half-wave voltage, V_π, at 34 V at a wavelength of 1550 nm using a modulator with a total length of 14.8 mm. The measured static power consumption of our stress-optic modulator is in the uW-region as it is only determined by small leakage currents (< 0.1 uA), while the dynamic power consumption at a rise time of 1 ms (1 kHz excitation) is less than 4 mW per modulator. The stress optical modulator goes with an excess loss of 0.01 dB per modulator only. This is in line with the typical low loss characteristics of TriPleX waveguides, being < 0.1 dB/cm at a wavelength of 1550 nm. These specifications make stress-optic modulators an excellent choice for next generation optical beam forming networks with a large number of actuators in silicon photonics in general and in the TriPleX platform in particular.
机译:在这项工作中,我们演示了电信C波段基于氮化硅的波导平台(TriPleX)中的第一个应力光学调制器。在我们的应力光学相位调制器中,波导材料的折射率由在TriPleX波导几何结构顶部驱动2 um厚的PZT层引起的应力光学效应控制。除其他外,通过顶部包层的局部增加将施加的应力集中在波导芯区域中,从而优化了调制器的效率。使用Mach-Zehnder干涉仪,我们使用总长度为14.8 mm的调制器在34 V的1550 nm波长下测量了半波电压V_π。应力光调制器的测量静态功耗在uW区域,因为它仅由较小的泄漏电流(<0.1 uA)决定,而在上升时间为1 ms(激励为1 kHz)时的动态功耗为每个调制器小于4 mW。应力光学调制器仅每个调制器会产生0.01 dB的额外损耗。这与TriPleX波导的典型低损耗特性一致,在1550 nm波长下,其损耗<0.1 dB / cm。这些规范使应力光学调制器成为下一代光束形成网络的理想选择,该网络通常在硅光子学中,尤其是在TriPleX平台中具有大量的执行器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号