首页> 外文会议>Integrated optics: devices, materials, and technologies XVII >Efficient optimization of nanoplasmonic devices using space mapping
【24h】

Efficient optimization of nanoplasmonic devices using space mapping

机译:使用空间映射高效优化纳米等离子体设备

获取原文
获取原文并翻译 | 示例

摘要

We show that the space-mapping algorithm, originally developed for microwave circuit optimization, can enable the efficient optimization of nanoplasmonic devices. Space-mapping utilizes a physics-based coarse model to approximate a fine model accurately describing a device. The main concept in the algorithm is to find a mapping that relates the fine and coarse model parameters. If such a mapping is established, we can then avoid using the direct optimization of the computationally expensive fine model to find the optimal solution. Instead, we perform optimization of the computationally efficient coarse model to find its optimal solution, and then use the mapping to find an estimate of the fine model optimal. In this paper, we demonstrate the use of the space mapping algorithm for the optimization of metal-dielectric-metal plasmonic waveguide devices. In our case, the fine model is a full-wave finite-difference frequency-domain (FDFD) simulation of the device, while the coarse model is based on the characteristic impedance and transmission line theory. We show that, if we simply use the coarse model to optimize the structure without space mapping, the response of the structure obtained substantially deviates from the target response. On the other hand, using space mapping we obtain structures which match very well the target response. In addition, full-wave FDFD simulations of only a few candidate structures are required before the optimal solution is reached. In comparison, a direct optimization using the fine FDFD model in combination with a genetic algorithm requires thousands of full-wave FDFD simulations to reach the same optimal.
机译:我们表明,最初为微波电路优化而开发的空间映射算法可以实现纳米等离子体设备的高效优化。空间映射利用基于物理的粗略模型来近似精确描述设备的精细模型。该算法的主要概念是找到一个与精细和粗略模型参数相关的映射。如果建立了这样的映射,那么我们可以避免使用计算量大的精细模型的直接优化来找到最佳解决方案。取而代之的是,我们对计算效率高的粗模型进行优化,以找到其最优解,然后使用映射找到对最优模型的最优估计。在本文中,我们演示了使用空间映射算法优化金属-电介质-金属等离激元波导器件。在我们的案例中,精细模型是器件的全波有限差分频域(FDFD)仿真,而粗略模型则基于特征阻抗和传输线理论。我们表明,如果仅使用粗略模型来优化结构而不进行空间映射,则获得的结构的响应将大大偏离目标响应。另一方面,使用空间映射,我们可以获得与目标响应非常匹配的结构。此外,在达到最佳解决方案之前,仅需要几个候选结构的全波FDFD模拟即可。相比之下,将精细FDFD模型与遗传算法结合使用进行直接优化需要成千上万个全波FDFD仿真来达到相同的最佳效果。

著录项

  • 来源
  • 会议地点 San Francisco CA(US)
  • 作者单位

    School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, Louisiana 70803,Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803;

    School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, Louisiana 70803,Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Surface Plasmons; Metal optics; Optimization;

    机译:表面等离子;金属光学;优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号