首页> 外文会议>Charging amp; infrastructure symposium 2018 >EDLC Lifetime Holistic Estimation for Heavy-Duty Applications
【24h】

EDLC Lifetime Holistic Estimation for Heavy-Duty Applications

机译:重型应用的EDLC生命周期整体估算

获取原文
获取原文并翻译 | 示例

摘要

In the last years, the world is facing the challenge of reducing gas emissions from urban and interurban transport means while maintaining the current mobility opportunities. This emerging global scenario boosted the need of more efficient means of transport. In this context, tramways represent one of the most suitable solutions due to their low energy consumption per passenger [1]. On the contrary, their high upfront infrastructure cost and the unsightly impact of overhead cables are hampering a greater market penetration. An effective approach to tackle aerial cables barrier would be to deploy on-board energy storage systems (OESS) [1]. Given the high specific power and high cycling capacity of the Electric Double Layer Capacitors (EDLC), these devices are one of the most attractive OESS for its implementation in this type of heavy-duty applications [2]. During the last years technology has improved rapidly to a high level of maturity, however few publications updated the impact of voltage, temperature and charge-discharge current on EDLC lifetime. In addition, the existing updated studies are based on short-term experiments at very high voltage and temperatures [3], [4] and their adaptability to more realistic conditions would be arguable. The present work approaches the lifetime estimation of EDLC based on the aforementioned ageing impact factors, and considering the application realistic operation conditions. A system optimisation tool based on lifetime estimation has been developed with the objective of guaranteeing the targeted tramway operation mode, while optimizing the costs of the infrastructure and the OESS. A model for EDLC lifetime estimation is presented, which was developed based on long-term experimental ageing tests, along with validation tests based on a real tramway application profile. It relies on the principle that the lifetime of an EDLC is inversely proportional to the redox reaction rate [5], and considers the impact of voltage (V), temperature (T) and current (I_RMS) in a single model (Eq.(l)). In addition, it deals separately with the influence of calendar and cycling ageing. t (V, T, I_RMS to 20% cap. loss) = M ((Vref-V)/Vref)[-n] x exp(Ea/G x (1+U (Tref-T)/Tref) [-1/ B]) x exp (L x I_RMS/C) (1) where, Ea is the activation energy (eV); B is the Boltzmann constant (B = 8.617e-5 eV/K); T and Tref are the surface temperature of the EDLC and reference temperature (K), respectively; V and Vref are the terminal voltage and nominal voltage of the EDLC (V), respectively; IRMS is the RMS current measured in the EDLC (A); C is the capacitance of the EDLC (F); and G, M, n, U, and L are constant parameters. The power demand profile of the Kaohsiung-Taiwan tramway route (first 100% catenary free operation in the world), developed by CAF, has been used to test the estimation algorithm. The developed lifetime estimation model is suitable for applications of different nature. It can estimate EDLC lifetime operated on different heavy-duty applications, such as the tramway or the hybrid electric bus, as well as the lifetime of EDLC used on less demanding stationary applications, such as an Uninterrupted Power System (UPS).
机译:在过去的几年中,世界面临着减少城市和城市间交通手段的气体排放,同时又要保持当前的交通机会的挑战。这种正在出现的全球情况促使人们需要更有效的运输手段。在这种情况下,电车轨道是每位乘客的低能耗[1],是最合适的解决方案之一。相反,其高昂的前期基础设施成本以及架空电缆的难看影响正在阻碍更大的市场渗透率。解决架空电缆障碍的有效方法是部署机载储能系统(OESS)[1]。鉴于双电层电容器(EDLC)的高比功率和高循环容量,这些设备对于在此类重型应用中的实现而言,是最有吸引力的OESS之一[2]。在过去的几年中,技术已迅速提高到高度成熟,但是很少有出版物更新了电压,温度和充放电电流对EDLC寿命的影响。另外,现有的更新研究是基于在非常高的电压和温度下的短期实验[3],[4],它们对于更现实条件的适应性将是有争议的。本工作基于上述老化影响因素,并考虑了实际应用条件,对EDLC的寿命进行了估算。已经开发了基于寿命估计的系统优化工具,其目的是在确保基础设施和OESS成本优化的同时,确保目标电车运行模式。提出了用于EDLC寿命估算的模型,该模型是根据长期的实验老化测试以及基于真实电车轨道应用配置文件的验证测试开发的。它基于EDLC的寿命与氧化还原反应速率成反比的原理[5],并在单个模型中考虑了电压(V),温度(T)和电流(I_RMS)的影响(公式(( l))。此外,它还分别处理日历和自行车老化的影响。 t(V,T,I_RMS至20%的电容损耗)= M((Vref-V)/ Vref)[-n] x exp(Ea / G x(1 + U(Tref-T)/ Tref)[- 1 / B])x exp(L x I_RMS / C)(1)其中,Ea是活化能(eV); B是玻尔兹曼常数(B = 8.617e-5 eV / K); T和Tref分别是EDLC的表面温度和参考温度(K); V和Vref分别是EDLC的端电压和标称电压(V); IRMS是在EDLC(A)中测得的RMS电流; C是EDLC的电容(F); G,M,n,U和L是常数参数。 CAF开发的高雄-台湾电车路线(世界上第一个100%的接触网无功运行)的电力需求曲线已用于测试估算算法。开发的寿命估算模型适用于不同性质的应用。它可以估计在不同重型应用(如电车轨道或混合动力公交车)上运行的EDLC寿命,以及在要求不高的固定应用(如不间断电源系统(UPS))中使用的EDLC的寿命。

著录项

  • 来源
  • 会议地点 Mainz(DE)
  • 作者单位

    IK4-Ikerlan, Technology Research Centre, P J. M. Arizmendiarrieta 2, Arrasate-Mondragon, E-20500 Spain;

    IK4-Ikerlan, Technology Research Centre, P J. M. Arizmendiarrieta 2, Arrasate-Mondragon, E-20500 Spain;

    CAF Power and Automation, Parque Tecnologico de San Sebastian, Mikeletegi Pasealekua, 58-2, San Sebastian, E-20009 Spain;

    CAF Power and Automation, Parque Tecnologico de San Sebastian, Mikeletegi Pasealekua, 58-2, San Sebastian, E-20009 Spain;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号