首页> 外文会议>IEEE Optoelectronics Global Conference >On-line Detection of Pantograph Offset Based on Deep Learning
【24h】

On-line Detection of Pantograph Offset Based on Deep Learning

机译:基于深度学习的受电弓偏移量在线检测

获取原文
获取外文期刊封面目录资料

摘要

A safe train operation relies on the well-contact of pantograph and the power grid above, therefore identifying the state of pantograph plays an vital role. Among all of the malfunctions, pantograph offset is a strong reflection of the state. We have proposed a new approach to reconstructing the three-dimensional (3D) information of the bow by substituting the offset with connection of left and right horns. To locate the region of pantograph horn, we refer to an efficient deep learning method, named Single Shot MultiBox Detector (SSD). In the located area, region growing or Wiener filtering is applied to extract connected components and enhance the prospects. For processed images, grayscale morphological gradients is adopted to obtain image edges, on which Harris corner detection can provide dozens of potential corner-points. These points containing one correct horn point needs selection by assuming the lowest one is the best, only when the background noise is as low as possible. After attaining the two-dimensional (2D) image coordinates of the horns, binocular stereo vision method makes contribution to reconstructing 3D coordinates. Using the 3D coordinate line of the left and right horns to represent the pantograph offset can easily reflect the degree of deviation by comparing it with the initial location of pantograph. Our approach is of great significance to prevent malfunction, which are about to arise later, such as horn loss or deflection, spark of pantograph and catenary system contact-point. The detection of the pantograph offset provides a strong guarantee for maintaining railway traffic safety.
机译:火车的安全运行取决于受电弓与上方电网的良好接触,因此识别受电弓的状态至关重要。在所有故障中,受电弓偏移是该状态的强烈反映。我们提出了一种新的方法,通过用左,右角的连接代替偏移量来重建弓的三维(3D)信息。要定位受电弓喇叭的区域,我们指的是一种有效的深度学习方法,称为单发多盒检测器(SSD)。在该区域,可应用区域增长或维纳滤波来提取连接的组件并增强前景。对于处理后的图像,采用灰度形态梯度来获得图像边缘,哈里斯角点检测可以在该边缘上提供数十个潜在的角点。仅当背景噪声尽可能低时,才需要选择最低的喇叭角为最佳来选择包含一个正确的喇叭点的这些点。在获得角的二维(2D)图像坐标之后,双目立体视觉方法有助于重建3D坐标。使用左右角的3D坐标线表示受电弓的偏移量,可以通过将其与受电弓的初始位置进行比较来轻松反映偏差程度。我们的方法对于防止故障的发生具有重要意义,故障将在以后发生,例如喇叭损失或偏转,受电弓的火花和接触网的接触点。受电弓偏移的检测为维护铁路交通安全提供了有力的保证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号