首页> 外文会议>IEEE Nuclear Science Symposium;Medical Imaging Conference >Hardware Implementation of a Fast Algorithm for the Reconstruction of Muon Tracks in ATLAS Muon Drift-Tube Chambers for the First-Level Muon Trigger at the HL-LHC
【24h】

Hardware Implementation of a Fast Algorithm for the Reconstruction of Muon Tracks in ATLAS Muon Drift-Tube Chambers for the First-Level Muon Trigger at the HL-LHC

机译:快速算法的硬件实现,用于在HL-LHC的一级μ子触发器上重建ATLAS的μon漂移管腔中的μ子轨道

获取原文

摘要

The High-Luminosity LHC will provide the unique opportunity to explore the nature of physics beyond the Standard Model of strong and electroweak interactions. Highly selective first level triggers are essential for the physics programme of the ATLAS experiment at the HL-LHC where the instantaneous luminosity will exceed the LHC Run 1 instantaneous luminosity by almost an order of magnitude. The ATLAS first level muon trigger rate is dominated by low momentum muons, selected due to the moderate momentum resolution of the resistive plate and thin gap trigger chambers. This limitation can be overcome by including the data of the precision muon drift tube (MDT) chambers in the first level trigger decision. This requires the fast continuous transfer of the MDT hits to the off-detector trigger logic and a fast track reconstruction algorithm performed in the trigger logic. In order to demonstrate the feasibility of reconstructing tracks in MDT chambers within the short available first-level trigger latency of about 3 μs we implemented a seeded Hough transform on the ARM Cortex A9 microprocessor of a Xilinx Zynq FPGA and studied its performance with test-beam data recorded in CERN's Gamma Irradiation Facility. We could show that by using the ARM processor's Neon Single Instruction Multiple Data Engine to carry out 4 floating point operations in parallel the challenging latency requirement can be matched.
机译:除了强弱电相互作用的标准模型外,高光度LHC将提供探索物理性质的独特机会。高度选择性的一级触发对于HL-LHC上ATLAS实验的物理程序至关重要,在该程序中,瞬时光度将比LHC Run 1瞬时光度高出一个数量级。 ATLAS一级μ子的触发速率主要由低动量的μ子决定,这是由于电阻板和薄间隙触发腔的中等动量分辨率而选择的。可以通过在第一级触发决策中包括精密μon子漂移管(MDT)腔室的数据来克服此限制。这需要将MDT命中快速连续传输到检测器外触发逻辑,并需要在触发逻辑中执行快速跟踪重建算法。为了证明在大约3μs的短可用第一级触发延迟时间内在MDT腔室中重建轨迹的可行性,我们在Xilinx Zynq FPGA的ARM Cortex A9微处理器上实现了种子式Hough变换,并通过测试束研究了其性能。 CERN的伽马辐照设施中记录的数据。我们可以证明,通过使用ARM处理器的Neon单指令多数据引擎并行执行4个浮点运算,可以满足具有挑战性的延迟要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号