首页> 外文会议>IEEE Congress on Evolutionary Computation;CEC '09 >Lift maximization with uncertainties for the optimization of high lift devices using Multi-Criterion Evolutionary Algorithms
【24h】

Lift maximization with uncertainties for the optimization of high lift devices using Multi-Criterion Evolutionary Algorithms

机译:使用多准则进化算法优化高扬程设备时具有不确定性的扬程最大化

获取原文

摘要

In this paper, the aerodynamic shape optimization problems with uncertain operating conditions has been addressed. After a review of robust control theory and the possible approaches to take into account uncertainties, the use of Taguchi robust design methods in order to overcome single point design problems in aerodynamics is proposed. Under the Taguchi concept, a design with uncertainties is converted into an optimization problem with two objectives which are the mean performance and its variance, so that the solutions are as less sensitive to the uncertainty of the input parameters as possible. Furthermore, the multi-criterion evolutionary algorithms (MCEAs) are used to capture a set of compromised solutions (Pareto front) between these two objectives. The flow field is analyzed by Navier-Stokes computation using an unstructured mesh. The proposed approach drives to the solution of a multi-objective optimization problem that is solved using a modification of a non-dominated sorting genetic algorithm (NSGA). In order to reduce the number of expensive evaluations of the fitness function a response surface modeling (RSM) is employed to estimate the fitness value using the polynomial approximation model. During the solution of the optimization problem a semi-torsional spring analogy is used for the adaption of the computational mesh to all the obtained geometrical configurations. The proposed approach is applied to the robust optimization of the 2D high lift devices of a business aircraft by maximizing the mean and minimizing the variance of the lift coefficients with uncertain free-stream angle of attack at landing and takeoff flight conditions, respectively.
机译:在本文中,已经解决了具有不确定运行条件的空气动力学形状优化问题。在对鲁棒控制理论和考虑不确定性的可能方法进行了回顾之后,提出了使用Taguchi鲁棒设计方法来克服空气动力学中的单点设计问题的建议。在Taguchi概念下,具有不确定性的设计被转换为具有两个目标的优化问题,即平均性能及其方差,因此解决方案对输入参数的不确定性越不敏感。此外,多准则进化算法(MCEA)用于捕获这两个目标之间的一组折衷解(Pareto前沿)。通过使用非结构化网格的Navier-Stokes计算来分析流场。所提出的方法驱使多目标优化问题的解决方案,该问题是通过修改非主导排序遗传算法(NSGA)来解决的。为了减少对适应度函数进行昂贵评估的次数,采用了响应面建模(RSM)来使用多项式逼近模型估算适应度值。在解决优化问题的过程中,使用半扭转弹簧类比来使计算网格适应所有获得的几何构型。通过最大化均值和最小化分别具有不确定的自由流迎角在着陆和起飞飞行条件下的升力系数的方差,该提议的方法被应用于商务飞机的2D高升力设备的鲁棒优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号