首页> 外文会议>Hydroinformatics 2006 vol.2 >NUMERICALLY OPTIMIZED EMPIRICAL MODELING OF HIGHLY DYNAMIC, SPATIALLY EXPANSIVE, AND BEHAVIORALLY HETEROGENEOUS HYDROLOGIC SYSTEMS- PART 2
【24h】

NUMERICALLY OPTIMIZED EMPIRICAL MODELING OF HIGHLY DYNAMIC, SPATIALLY EXPANSIVE, AND BEHAVIORALLY HETEROGENEOUS HYDROLOGIC SYSTEMS- PART 2

机译:动态,空间扩展和行为异常的水文系统的数值优化实证模型-第2部分

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Modeling highly dynamic hydrologic systems on a spatially expansive scale is challenging because behaviors vary discontinuously both spatially and temporally. Building representative empirical models requires sufficient data to capture diverse causes and effects. Measured variables may be either categorical or dynamic (time series or signals), and relations between predictor and response variables are often nonlinear. Previous efforts described a modeling approach and two applications that use a sequence of numerically optimized data mining algorithms. "Time series clustering" can optimally segment a large collection of signals into "classes" that are dynamically similar. Artificial neural networks are a multivariate, nonlinear curve fitting technique that can optimally model each class's behavior. The first application was a model that auto-regressively generated spatially continuous aquifer water level predictions from a finite set of water level signals and the spatial coordinates of their monitoring sites. The second application predicted hourly stream temperatures in western Oregon from climate signals and categorical stream habitat and basin attributes. This paper describes an application in Wisconsin that, like the Oregon model, predicts stream temperatures from climate signals and categorical site attributes. However, it is conceptually different from the earlier applications, which used concurrently measured signals. Most of the Wisconsin stream temperatures were measured at different times over 13 years. This required a new time series clustering algorithm that would still segment the signals according to their dynamic.
机译:由于行为在空间和时间上都是不连续变化的,因此在空间扩展规模上对高度动态的水文系统进行建模具有挑战性。建立具有代表性的经验模型需要足够的数据来捕获各种原因和结果。被测变量可以是分类变量,也可以是动态变量(时间序列或信号),预测变量和响应变量之间的关系通常是非线性的。先前的工作描述了一种建模方法和两个应用程序,它们使用了一系列数值优化的数据挖掘算法。 “时间序列聚类”可以最佳地将大量信号细分为动态相似的“类”。人工神经网络是一种多元非线性曲线拟合技术,可以最佳地模拟每个类的行为。第一个应用程序是一个模型,该模型根据一组有限的水位信号及其监视站点的空间坐标自动回归生成空间连续的含水层水位预测。第二个应用程序根据气候信号以及明确的河流生境和流域属性来预测俄勒冈州西部每小时的河流温度。本文介绍了威斯康星州的一个应用程序,就像俄勒冈模型一样,该应用程序根据气候信号和分类地点属性预测河流温度。但是,它在概念上与使用同时测量信号的早期应用程序不同。威斯康星州大多数溪流温度是在13年的不同时间测量的。这需要一种新的时间序列聚类算法,该算法仍将根据信号的动态程度对其进行分段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号