首页> 外文会议>HTD-vol.376-1; ASME(American Society of Mechanical Engineers) International Mechanical Engineering Congress and Exposition; 20051105-11; Orlando,FL(US) >ENHANCING COMBUSTION IN A DUMP COMBUSTOR USING COUNTERCURRENT SHEAR. PART 2: HEAT RELEASE RATE MEASUREMENTS AND GEOMETRY EFFECTS
【24h】

ENHANCING COMBUSTION IN A DUMP COMBUSTOR USING COUNTERCURRENT SHEAR. PART 2: HEAT RELEASE RATE MEASUREMENTS AND GEOMETRY EFFECTS

机译:使用逆向剪切增强自燃式燃烧器的燃烧。第2部分:放热率测量和几何效应

获取原文
获取原文并翻译 | 示例

摘要

Research to advance our understanding of the countercurrent shear flow has been conducted, with particular emphasis on those characteristics of countercurrent shear that are beneficial for combustion applications. Studies carried out in a backward-facing step combustor burning prevaporized JP10-air mixtures, have examined the implementation of counterflow as a means to enhance turbulent burning velocities, with the overall objective of increasing volumetric heat release rates and thereby create a more compact combustion zone. The dump combustor is characterized by a nominally two-dimensional primary flow mixture of prevaporized fuel and air, entering a rectangular channel before encountering a 2:1 single-sided step expansion. Flow separation over the sudden expansion and the resulting recirculation set up a countercurrent shear layer downstream of the dump plane and a low velocity zone conducive to flame anchoring. Combustion control strategies aim to increase turbulent kinetic energy and flame three-dimensionality in an effort to increase flame surface area and thus burning rates. A secondary flow is created via suction at the dump plane as a fluidic control mechanism to enhance the naturally occurring countercurrent shear layer. Counterflow is shown to elevate turbulence levels and volumetric heat release rates downstream of the step in the base geometry while concomitantly reducing the scale of the recirculation zone. Modifications to the rearward-facing step geometry are investigated using Particle Image Velocimetry (PIV) under isothermal flow conditions in an effort to extend the near field interaction between the recirculation zone and the incoming primary flow, thus exploiting the benefits of counterflow as seen in the base geometry. Using chemiluminescence, relative heat release rates are shown to increase by 90% with a counterflow level of 6% of the primary flow by mass in the base geometry, and a 150% increase with a counterflow level of 2.4% in the modified step geometry.
机译:已经进行了研究以提高我们对逆流剪切流的理解,特别是强调了对逆流剪切有利于燃烧的那些特性。在向后步骤燃烧器中燃烧预蒸发的JP10-空气混合物的研究已经研究了逆流的实施,以增强湍流燃烧的速度,其总体目标是提高体积放热率,从而创建更紧凑的燃烧区。翻斗燃烧室的特征在于,预蒸发的燃料和空气的名义上为二维的主流混合气,在遇到2:1单侧阶梯式膨胀之前先进入矩形通道。突然膨胀的流动分离和由此产生的再循环在转储平面的下游建立了逆流剪切层,并形成了有利于火焰锚固的低速区。燃烧控制策略旨在增加湍流动能和火焰三维度,从而努力增加火焰表面积,从而提高燃烧速率。通过在转储平面上进行抽吸,可产生二次流,作为一种流体控制机制,以增强自然产生的逆流剪切层。已显示逆流可提高基本几何形状中台阶下游的湍流水平和体积放热速率,同时减少再循环区的规模。在等温流动条件下,使用粒子图像测速技术(PIV)研究了向后台阶几何形状的变化,以扩展回流区域和进入的主流之间的近场相互作用,从而充分利用了逆流的优势。基本几何。使用化学发光法,在基本几何形状中,相对热量释放速率以质量的主流量的6%为逆流水平增加了90%,在改进的阶梯几何形状中,以2.4%的逆流质量增加了150%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号