首页> 外文会议>Gamma Field Symposia no.43; Symposium on Improvement of Crop Productivity and Mutation; 20040714-15; Ibaraki-ken(JP) >REAL-TIME MONITORING AND ANALYSIS OF NUTRIENT TRANSPORTATION IN A LIVING PLANT USING A POSITRON EMITTING TRACER IMAGING SYSTEM (PETIS)
【24h】

REAL-TIME MONITORING AND ANALYSIS OF NUTRIENT TRANSPORTATION IN A LIVING PLANT USING A POSITRON EMITTING TRACER IMAGING SYSTEM (PETIS)

机译:利用正电子发射示踪成像系统(PETIS)实时监测和分析植物体内的营养状况

获取原文
获取原文并翻译 | 示例

摘要

The radioisotope (RI) is a powerful tool in life-science studies that is used for the observation of substance transportation and metabolism. In the physiological study of plants, the application of radioisotope allows the dynamic analysis of assimilation, transportation, and accumulation of nutrients or other substances in plants. Generally, only a few radioisotopes are used in plant science. Carbon-14 (~(14)C) and tritium (~3H) are used for radiographs to observe the distribution of substances in a plant, and phosphorus-32 (~(32)P) and iodine-131 (~(131)I) are used for molecular biological experiments to determine the role of genes. Application of these radioisotopes provides static information on plant physiology. These radioisotopes decay with β-mode and single weak β radiation was emitted by the decay. It is necessary to prepare a thin slice or an extraction of the sample for the detection of these radioisotopes. Therefore, it is quite difficult to detect these radioisotopes in living things non-invasively. The number of radioisotopes used for biological studies is not very high. Every element has isotopes. Some of them are stable, and others are radioactive. For example, carbon has isotopes ~(10)C, ~(11)C, ~(12)C, ~(13)C, ~(14)C, and ~(15)C. ~(12)C and ~(13)C are stable, and ~(10)C, ~(11)C, ~(14)C, and ~(15)C are radioactive. A radioisotope has an intrinsic decay mode and a decay constant (half-life time). The main decay mode of ~(10)C is β+, and the half-life time is 19.4 sec. The main decay mode and half-life time of ~(11)C, ~(14)C, and ~(15)C are β+ and 20.4 min, β- and 5730 year, and β - and 2.4 sec, respectively. ~(11)C- or ~(14)C-labeled compounds, such as carbon dioxide, are being used for plant physiology studies, especially in the study of the mechanism of photosynthesis and transportation of photoassimilates in plants. The half-lives of ~(10)C and ~(15)C are too short; therefore, they cannot easily be used for plant physiology experiments. The long half-life of ~(14)C allows the chase of ~(14)C-labeled compounds for a long period in plants, but it is difficult to detect the radiation of ~(14)C non-invasively. The half-life of ~(11)C is shorter than that of ~(14)C, but the decay mode of ~(11)C allows non-invasive monitoring of ~(11)C-labeled compounds in living plants. ~(11)C is called a positron-emitting nuclide. A positron-emitting nuclide emits a positron (β + particle) when it decays. A positron annihilates with an electron, and the mass of the particles converts to a pair of 511 keV γ-rays that are emitted at 180 degrees from each other. The annihilation γ-rays easily escape from the plant body and may be detected externally. Coincidence detection of a pair of annihilation γ -rays provides non-invasive monitoring of the process of transportation of a positron-emitting nuclide-labeled substance in a living plant with high spatial resolution. In medicine, positron-emitting nuclei, such as ~(11)C, ~(13)N, ~(15)O, and ~(18)F, are exploited for understanding the biochemical basis of normal and abnormal functions within the body and biochemical examination of patients as part of their clinical care.
机译:放射性同位素(RI)是生命科学研究中的强大工具,可用于观察物质的运输和代谢。在植物的生理研究中,放射性同位素的应用可以动态分析植物中养分或其他物质的吸收,运输和积累。通常,在植物科学中仅使用少数放射性同位素。碳14(〜(14)C)和tri(〜3H)用于射线照相以观察植物中物质的分布,磷32(〜(32)P)和碘131(〜(131) I)用于分子生物学实验以确定基因的作用。这些放射性同位素的应用提供了有关植物生理的静态信息。这些放射性同位素以β模衰变,衰变发射出单个弱β辐射。必须准备薄片或样品提取物以检测这些放射性同位素。因此,非侵入性地检测生物中的这些放射性同位素非常困难。用于生物学研究的放射性同位素的数量不是很高。每个元素都有同位素。其中一些是稳定的,而其他则是放射性的。例如,碳具有同位素〜(10)C,〜(11)C,〜(12)C,〜(13)C,〜(14)C和〜(15)C。 〜(12)C和〜(13)C是稳定的,〜(10)C,〜(11)C,〜(14)C和〜(15)C具有放射性。放射性同位素具有固有的衰变模式和衰变常数(半衰期)。 〜(10)C的主要衰减模式为β+,半衰期为19.4秒。 〜(11)C,〜(14)C和〜(15)C的主要衰减模式和半衰期分别为β+和20.4分钟,β-和5730年以及β-和2.4秒。 〜(11)C-或〜(14)C标记的化合物,例如二氧化碳,正用于植物生理研究,尤其是在植物中光合作用和光同化物运输机制的研究中。 〜(10)C和〜(15)C的半衰期太短;因此,它们不能轻易地用于植物生理学实验。 〜(14)C的半衰期长,可以在植物中长期追踪〜(14)C标记的化合物,但是很难以非侵入方式检测〜(14)C的辐射。 〜(11)C的半衰期短于〜(14)C的半衰期,但是〜(11)C的衰变模式允许以无创方式监测活植物中〜(11)C标记的化合物。 〜(11)C称为发射正电子的核素。发射正电子的核素在衰变时会发射正电子(β+粒子)。正电子用电子electron灭,粒子的质量转换成一对511 keVγ射线,它们以180度彼此发射。 an灭γ射线很容易从植物体内逸出,并可能在外部被检测到。一对of灭γ射线的重合检测可对具有正电子发射性的核素标记物质在具有高空间分辨率的植物中的运输过程进行无创监测。在医学中,利用正电子发射核,例如〜(11)C,〜(13)N,〜(15)O和〜(18)F,来了解体内正常和异常功能的生化基础。对患者进行生化检查,并将其作为临床护理的一部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号