首页> 外文会议>Fusion energy 1998 >EFFECTS OF PLASMA SHAPE AND PROFILES ON EDGE STABILITY IN DIII-D
【24h】

EFFECTS OF PLASMA SHAPE AND PROFILES ON EDGE STABILITY IN DIII-D

机译:等离子形状和轮廓对DIII-D边缘稳定性的影响

获取原文
获取原文并翻译 | 示例

摘要

The results of recent experimental and theoretical studies concerning the effects of plasma shapernand current and pressure profiles on edge instabilities in DIII-D are presented. Magnetic oscillationsrnwith toroidal mode number n ≈ 2-9 and a fast growth time γ~(-1) = 20-150 μs are often observed prior tornthe first giant type I ELM in discharges with moderate squareness. High n ideal ballooning secondrnstability access encourages edge instabilities by facilitating the buildup of the edge pressure gradientrnand bootstrap current density which destabilize the intermediate to low n modes. Analysis suggestsrnthat discharges with large edge pressure gradient and bootstrap current density are more unstable to nrn> 1 modes. Calculations and experimental results show that ELM amplitude and frequency can bernvaried by controlling access to the second ballooning stability regime at the edge through variation ofrnthe squareness of the discharge shape. A new method is proposed to control edge instabilities byrnreducing access to the second ballooning stability regime at the edge using high order localrnperturbation of the plasma shape in the outboard bad curvature region.
机译:提出了有关DIII-D中等离子体形状,电流和压力分布对边缘不稳定性的影响的最新实验和理论研究的结果。在第一个巨型I型ELM之前,在中等矩形度的放电中通常会观察到具有环形模数n≈2-9的磁振荡和快速的生长时间γ〜(-1)= 20-150μs。高n个理想的膨胀第二次稳定性通道通过促进边缘压力梯度和自举电流密度的建立而促进了边缘不稳定性,这使中间到低n模式不稳定。分析表明,具有较大边沿压力梯度和自举电流密度的放电在nrn> 1模式下更加不稳定。计算和实验结果表明,通过改变放电形状的矩形度,可以控制进入边缘的第二个膨胀稳定状态,从而可以改变ELM的幅度和频率。提出了一种新的方法来控制边缘不稳定性,方法是使用外侧不良曲率区域中的等离子体形状的高阶局部扰动来减少在边缘处进入第二膨胀稳定状态的通道。

著录项

  • 来源
    《Fusion energy 1998》|1998年|p.1-8|共8页
  • 会议地点 Yokohama(JP)
  • 作者单位

    DIII-D National Fusion Facility, General Atomics, San Diego, California, U.S.A.;

    rnDIII-D National Fusion Facility, General Atomics, San Diego, California, U.S.A.;

    rnDIII-D National Fusion Facility, General Atomics, San Diego, California, U.S.A.;

    rnDIII-D National Fusion Facility, General Atomics, San Diego, California, U.S.A.;

    rnDIII-D National Fusion Facility, General Atomics, San Diego, California, U.S.A.;

    rnDIII-D National Fusion Facility, General Atomics, San Diego, California, U.S.A.;

    rnDIII-D National Fusion Facility, General Atomics, San Diego, California, U.S.A.;

    rnDIII-D National Fusion Facility, General Atomics, San Diego, California, U.S.A.;

    rnDIII-D National Fusion Facility, General Atomics, San Diego, California, U.S.A.;

    rnDIII-D National Fusion Facility, General Atomics, San Diego, California, U.S.A.;

    rnDIII-D National Fusion Facility, General Atomics, San Diego, California, U.S.A.;

    rnUniversity of California, Los Angeles, California, U.S.A.;

    rnOak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.;

    rnOak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.;

    rnUniversity of Wisconsin, Madison, Wisconsin, U.S.A.;

    rnLawrence Livermore National Laboratory, Livermore, California, U.S.A.;

    rnInstitute of Plasma Physics, Chinese Academy of Science, Hefei, P.R. China;

    rnInstitute of Plasma Physics, Chinese Academy of Science, Hefei, P.R. China;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 受控热核反应(聚变反应理论及实验装置);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号