首页> 外文会议>Frontiers in ultrafast optics: biomedical, scientific, and industrial applications XIII >Liquid jet generated by thermocavitation bubbles within a droplet
【24h】

Liquid jet generated by thermocavitation bubbles within a droplet

机译:液滴内的热空化气泡产生的液体射流

获取原文
获取原文并翻译 | 示例

摘要

High-speed video imaging was used to study the dynamic behavior of cavitation bubbles induced by a continuous wave (CW) laser into highly absorbing droplets water containing copper nitrate (CuNO_4). The droplet lays horizontally on a glass surface and the laser beam (λ=975 run) propagates vertically from underneath, across the glass and into the droplet. This beam is focused z=400 μm above the glass-liquid interface in order to produce the largest bubble as possible (R_(max)~ 1mm). In our experiment the thermocavitation bubbles are always in contact with the substrate, taking a hemispherical shape, regardless of where the laser focal point is, as opposed to the other methods that involved nano and picosecond laser pulses, where bubbles may nucleate and grow within the bulk of the fluid. We focus on the liquid jet which emerges out the droplet at velocities of about 3 m/s, due to the acoustic pressure wave (APW) emitted immediately after the bubble collapse, and after it breaks up into a secondary droplet or droplets depending of the droplet's volume, showing an alternative way of droplet generator that is simplest, light and cheaper. The dynamics of cavitation bubbles in confined geometries (drops) offers a rich hydrodynamic and the liquid jet generated after the bubble collapse could be used like acoustic waveguide, as was showed by Nicolas Bertin et. al.
机译:高速视频成像用于研究由连续波(CW)激光诱导的高吸收性水滴中含有硝酸铜(CuNO_4)的空化气泡的动态行为。液滴水平放置在玻璃表面上,激光束(λ= 975游程)从下方垂直传播,穿过玻璃并进入液滴。该光束在玻璃-液体界面上方聚焦z = 400μm,以产生最大的气泡(R_(max)〜1mm)。在我们的实验中,热空化气泡始终与基板接触,呈半球形,无论激光焦点在哪里,这与涉及纳秒和皮秒激光脉冲的其他方法相反,在其他方法中,气泡可能会在玻璃内成核并生长。大量的液体。我们关注的是液体喷射,它是在气泡破裂后立即发出声压波(APW),然后分解成第二个或多个液滴,这取决于液滴的声速,从而以约3 m / s的速度将液滴喷出。液滴的体积,显示出液滴发生器的另一种方法,该方法最简单,轻便且便宜。 Nicolas Bertin等人的研究表明,在有限的几何形状(液滴)中,空化气泡的动力学提供了丰富的流体动力学特性,并且可以像声波导管一样使用气泡崩溃后产生的液体射流。等

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号