首页> 外文会议>Fluids Engineering Conference >Case Study of Improved High Specific Speed Radial Impeller
【24h】

Case Study of Improved High Specific Speed Radial Impeller

机译:改进型高比转速径向叶轮的案例研究

获取原文
获取原文并翻译 | 示例

摘要

It is usually thought that the axial impeller is used for high specific speed impeller and the radial impeller is used for low specific speed impeller. In the previous paper, the optimum meridian profile of axial impeller and radial impeller were obtained for various specific speed by means of the optimization of four shape factors using diffusion factor. The four shape factors were inlet relative flow angle β_1, turning angle Δβ, axial velocity ratio (meridian velocity ratio) κ_c = C_(m2)/C_(m1) and impeller diameter ratio κ_d = D_(1c)/D_(2c) in mid span stream surface. In case of axial impeller, the optimum meridian profiles agreed with meridian profiles of conventional impellers. To develop the radial high specific speed impeller, the optimum four shape factors of radial high specific speed impellers were calculated by diffusion factor. And the optimum meridian profiles of radial high specific speed impellers were proposed. In case of the radial impeller, the hub diameter is equal to the tip diameter in impeller outlet(the outlet hub-tip ratio is 1.0). And in axial impeller, the outlet blade height depends on the outlet hub-tip ratio. On the other hand, in mixed flow impeller, the outlet hub-tip ratio is various and the outlet blade height is independent of the outlet hub-tip ratio. To obtain the optimum meridian profile of mixed flow impeller, the hub-tip ratio of impeller outlet v_2 is adopted new additional independent shape factor for optimization in this paper. The mixed flow angle on tip meridian stream line (=0 degree in axial impeller, =90 degrees in radial impeller) isn't able to be decided by this optimization using diffusion factor. But, the mixed flow angle will be decided by the number of blade and solidity. And, it will be decided by meridian velocity distribution from hub to tip for each specific speed of impeller. So. in this paper the five shape factors are used for optimization by diffusion factor. (β_1, Δβ, κ_c, κ_d, v_2) The optimum meridian profiles of mixed flow impellers for various specific speed are obtained. The relative efficiency or the cavitation performance of mixed flow impeller is better than that of radial or axial impeller.
机译:通常认为轴向叶轮用于高比转速叶轮,而径向叶轮用于低比转速叶轮。在前一篇论文中,通过使用扩散因子对四个形状因子进行优化,获得了各种比转速下轴向叶轮和径向叶轮的最佳子午线轮廓。四个形状因子分别是入口相对流角β_1,转角Δβ,轴向速度比(子午线速度比)κ_c= C_(m2)/ C_(m1)和叶轮直径比κ_d= D_(1c)/ D_(2c)中跨流面。对于轴向叶轮,最佳子午线轮廓与常规叶轮的子午线轮廓一致。为了开发径向高比转速叶轮,通过扩散因子计算出径向高比转速叶轮的最佳四个形状因子。并提出了径向高比转速叶轮的最佳子午线轮廓。对于径向叶轮,毂直径等于叶轮出口的尖端直径(出口毂尖端比为1.0)。在轴向叶轮中,出口叶片的高度取决于出口轮毂-尖端比。另一方面,在混流叶轮中,出口毂顶比是变化的,并且出口叶片高度与出口毂顶比无关。为了获得混合流叶轮的最佳子午线轮廓,本文采用了叶轮出口v_2的轮毂尖端比来优化新的附加独立形状因子。尖端子午线流线上的混合流角(轴向叶轮= 0度,径向叶轮= 90度)无法通过使用扩散因子的优化来确定。但是,混合流角将取决于叶片的数量和坚固性。并且,将由叶轮的每个特定速度的从轮毂到叶尖的子午线速度分布来决定。所以。本文将五个形状因子用于通过扩散因子进行优化。 (β_1,Δβ,κ_c,κ_d,v_2)获得了各种比转速下的混流叶轮的最佳子午线轮廓。混流叶轮的相对效率或空化性能优于径向或轴向叶轮。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号