【24h】

Using of High-Energy Methods for Production of Nanocrystallic Materials

机译:利用高能方法生产纳米晶体材料

获取原文
获取原文并翻译 | 示例

摘要

We have determined an interrelation between physical-chemical properties of initial ultra-disperse powders (UDP) Ta_2O_3 and nano-powders Al_2O_3, produced by different methods, with a microstucture and physical-mechanical properties of experimental samples. We have investigated peculiarities of static and dynamic compaction of the abovementioned powders. It showed that using dynamic compaction enables to get compacts with density 15-20 % higher than when using conventional static one, which is dew to destruction of fragile structural elements, their reciprocal friction and high-speed heating. We have studied mechanisms of sintering the samples within the temperature range of 1300-1600 ℃ and investigated its influence on crystallites sizes, porosity and their distribution according to their sizes. Using high-energy loading methods (a static at high pressure and temperature and a dynamic one) enabled to produce a more dense (up to 98-99 %) nano-crystallite structure (100-500 nm) of the material, which has microhardness and cracking-resistance 1.2-1.4 times higher than during conventional consolidation methods.
机译:我们已经确定了初始超分散粉末(UDP)Ta_2O_3和通过不同方法生产的纳米粉末Al_2O_3的物理化学性质与实验样品的微观结构和物理力学性质之间的相互关系。我们已经研究了上述粉末的静态和动态压实的特性。结果表明,与传统的静态压实相比,动态压实可以获得的密度高15-20%,这对易碎的结构元件的破坏,它们的往复摩擦和高速加热具有重要意义。我们研究了在1300-1600℃温度范围内烧结样品的机理,并研究了其对微晶尺寸,孔隙率及其分布的影响。使用高能加载方法(在高压和高温下为静态,而在动态下为静态),可以产生具有微硬度的材料的更致密(高达98-99%)的纳米微晶结构(100-500 nm)。和抗裂性是传统固结方法的1.2-1.4倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号