首页> 外文会议>Energy geotechnics >Advanced shallow geothermal systems: Temperature induced cracking of backfill materials and system hydraulic conductivity
【24h】

Advanced shallow geothermal systems: Temperature induced cracking of backfill materials and system hydraulic conductivity

机译:先进的浅层地热系统:温度引起的回填材料开裂和系统水力传导率

获取原文
获取原文并翻译 | 示例

摘要

Shallow geothermal systems are one of the key technologies for a renewable and sustainablernenergy supply. The most common system is the borehole heat exchanger (BHE). These systems are capable tornprovide both, heating and cooling. A significant reduction of fossil thermal and electrical energy consumptionrncan be achieved by using this kind of renewable geothermal energy. Furthermore the underground can be used asrna thermal storage (UTES). For an efficient use of these advanced systems, fast thermal loading cycles are needed.rnHowever, legal constraints for the groundwater protection must be fulfilled as well. The fast heat extraction fromrnthe underground requires materials that are resistant to rapid temperature changes. These temperature changesrnmight include temperatures below zero degrees Celsius and consequently a potential freezing of the pore waterrnof the surrounding grouting material. The frost resistance of grouting materials is discussed controversy over thernpast decades. Recently a testing procedure was developed that quantifies the influences of freeze-thaw-cycles onrnthe hydraulic conductivity of the system BHE. The main component is a testing device that simulates the in-siturngeomechanical boundary conditions and quantifies the sealing capability of the grout. Due to the considerationrnof the in-situ direction of the freezing process, the results differ substantially from earlier investigations on frostrnresistance.With this procedure standardized and repeatable evaluations become feasible. This paper presents therntesting device itself including numerical and experimental proofs of concept. Besides the numerical simulationrnof the phase change processes inside a grout specimen, results from calibration and round robin test will berndiscussed. The thermo-hydraulic influences and implications on the modelling of the heat flow in BHEs arernanalysed. The experimental results enable a comparison of the frost resistance of commercial grouts used (e.g.rnin central Europe). Finally the options and needs for further investigations and the implementation for thernconstruction and operation of advanced geothermal systems are discussed.
机译:浅层地热系统是可再生和可持续能源供应的关键技术之一。最常见的系统是井壁热交换器(BHE)。这些系统能够同时提供加热和冷却。通过使用这种可再生的地热能可以大大减少化石的热能和电能消耗。此外,地下可以用作asrna储热库(UTES)。为了有效利用这些先进的系统,需要快速的热负荷循环。但是,还必须满足地下水保护的法律约束。从地下快速排热需要能够抵抗温度快速变化的材料。这些温度变化可能包括低于零摄氏度的温度,因此可能冻结周围注浆材料的孔隙水。在过去的几十年中,对灌浆材料的抗冻性进行了讨论。最近,开发了一种测试程序,该程序量化了冻融循环对系统BHE的水力传导率的影响。主要组件是一个测试设备,该设备可模拟旋转地质力学边界条件并量化灌浆的密封能力。由于考虑到冷冻过程的原位方向,结果与早期的抗冻性研究有很大不同。通过此程序,标准化和可重复的评估变得可行。本文介绍了测试设备本身,包括概念的数值和实验证明。除了数值模拟以外,还将讨论水泥浆样品内部的相变过程,校准和循环试验的结果。分析了热工水力对BHE中热流建模的影响。实验结果使得能够比较所使用的商业灌浆(例如在中欧的rnn)的抗冻性。最后讨论了进一步研究的选项和需求,以及先进地热系统的建设和运营的实施。

著录项

  • 来源
    《Energy geotechnics》|2016年|203-208|共6页
  • 会议地点 Kiel(DE)
  • 作者单位

    APS Antriebs-, Prüf- und Steuertechnik GmbH, Rosdorf, Germany;

    Technische Universität Darmstadt, Darmstadt, Germany;

    Technische Universität Darmstadt, Darmstadt, Germany;

    Frank GeoConsult GmbH, Hamburg, Germany;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号