首页> 外文会议>Emerging digital micromirror device based systems and applications VIII >Powerful DMD-based light sources with a high throughput virtual slit
【24h】

Powerful DMD-based light sources with a high throughput virtual slit

机译:基于DMD的强大光源,具有高通量虚拟狭缝

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Many DMD-based programmable light sources consist of a white light source and a pair of spectrometers operating in subtractive mode. A DMD between the two spectrometers shapes the delivered spectrum. Since both spectrometers must (1) fit within a small volume, and (2) provide significant spectral resolution, a narrow intermediary slit is required. Another approach is to use a spectrometer designed around a High Throughput Virtual Slit, which enables higher spectral resolution than is achievable with conventional spectroscopy by manipulating the beam profile in pupil space. Conventional imaging spectrograph designs image the entrance slit onto the exit focal plane after dispersing the spectrum. Most often, near 1:1 imaging optics are used in order to optimize both entrance aperture and spectral resolution. This approach limits the spectral resolution to the product of the dispersion and the slit width. Achieving high spectral resolution in a compact instrument necessarily requires a narrow entrance slit, which limits instrumental throughput (etendue). By reshaping the pupil with reflective optics, HTVS-equipped instruments create a tall, narrow image profile at the exit focal plane without altering the NA, typically delivering 5X or better spectral resolution than is achievable with a conventional design. This approach works equally well in DMD-based programmable light sources as in single stage spectrometers. Assuming a 5X improvement in etendue, a 500 W source can be replaced by a 100 W equivalent, creating a cooler, more efficient tunable light source with equal power density over the desired bandwidth without compromising output power.
机译:许多基于DMD的可编程光源由白光源和以减法模式运行的一对光谱仪组成。两个光谱仪之间的DMD调整了所传送的光谱。由于两个光谱仪都必须(1)装在一个小体积内,并且(2)提供显着的光谱分辨率,因此需要一个狭窄的中间狭缝。另一种方法是使用围绕高通量虚拟狭缝设计的光谱仪,该光谱仪可通过操纵光瞳空间中的光束轮廓来实现比传统光谱仪更高的光谱分辨率。传统的成像光谱仪设计是在分散光谱后将入射狭缝成像到出射焦平面上。多数情况下,使用接近1:1的成像光学元件来优化入射光圈和光谱分辨率。这种方法将光谱分辨率限制为色散和狭缝宽度的乘积。在紧凑的仪器中实现高光谱分辨率必然需要狭窄的入口狭缝,这限制了仪器的通量(谱集)。通过使用反射光学器件对瞳孔进行整形,配备HTVS的仪器可在出射焦平面上产生高而窄的图像轮廓,而不会改变NA,通常可提供比传统设计可达到的5倍或更佳的光谱分辨率。这种方法在基于DMD的可编程光源中与在单级光谱仪中同样有效。假设集光率有5倍的提高,则可以用100 W的等效功率来代替500 W的光源,从而创建一个更凉爽,效率更高的可调光源,在所需带宽上具有相同的功率密度,而不会影响输出功率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号