【24h】

Towards artificial molecular motor-based electroactive/photoactive biomimetic muscles

机译:迈向基于人工分子马达的电活性/光活性仿生肌肉

获取原文
获取原文并翻译 | 示例

摘要

Artificial molecular motors have recently attracted considerable interest from the nanoscience and nanoengineering community. These molecular-scale systems utilize a 'bottom-up' technology centered around the design and manipulation of molecular assemblies, and are potentially capable of delivering efficient actuations at dramatically reduced length scales when compared to traditional microscale actuators. When stimulated by light, electricity, or chemical reagents, a group of artificial molecular motors called bistable rotaxanes— which are composed of mutually-recognizable and intercommunicating ring and dumbbell-shaped components - experience relative internal motions of their components just like the moving parts of macroscopic machines.Bistable rotaxanes' ability to precisely and cooperatively control mechanical motions at the molecular level reveals the potential of engineering systems that operate with the same elegance, efficiency, and complexity as biological motors function within the human body. We are in a process of developing a new class of bistable rotaxane-based electroactive/photoactive biomimetic muscles with unprecedented performance (strain: 40-60%, operating frequency: up to 1 MHz, energy density: ~50 J/cm~3, multi-stimuli: chemical, electricity, light). As a substantial step towards this long-term objective, we have proven, for the first time, that rotaxanes are mechanically switchable in condensed phases on solid substrates. We have further developed a rotaxane-powered microcantilever actuator utilizing an integrated approach that combines "bottom-up" assembly of molecular functionality with "top-down" microano fabrication. By harnessing the nanoscale mechanical motion from artificial molecular machines and eliciting a nanomechanical response in a microscale device, this system mimics natural skeletal muscle and provides a key component for the development of nanoelectromechanical system (NEMS).
机译:近年来,人工分子马达引起了纳米科学和纳米工程界的极大兴趣。这些分子规模的系统利用围绕分子组件的设计和操作为中心的“自下而上”技术,与传统的微型尺度致动器相比,潜在地能够以显着减小的长度尺度进行有效的致动。当受到光,电或化学试剂的刺激时,一组称为双稳态轮烷的人造分子电动机-由相互识别且互通的环形和哑铃状部件组成-像它们的运动部件一样,会经历其部件的相对内部运动。双稳态轮烷具有在分子水平上精确协调地控制机械运动的能力,揭示了工程系统的潜力,该系统以与生物马达在人体内起作用相同的优雅度,效率和复杂性运行。我们正在开发一种新型的双稳态基于轮烷的电活性/光活性仿生肌肉,具有前所未有的性能(应变:40-60%,工作频率:高达1 MHz,能量密度:〜50 J / cm〜3,多种刺激:化学,电,光)。作为迈向这一长期目标的重要一步,我们首次证明,轮烷可以在固态基质上以冷凝相机械转换。我们进一步利用结合了分子功能的“自下而上”装配与“自上而下”的微/纳米制造相结合的集成方法,进一步开发了由轮烷驱动的微悬臂致动器。通过利用来自人工分子机器的纳米级机械运动并在微型设备中引发纳米机械响应,该系统模仿了天然骨骼肌,并为开发纳米机电系统(NEMS)提供了关键要素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号