【24h】

Evolution in Asynchronous Cellular Automata

机译:异步细胞自动机的发展

获取原文
获取原文并翻译 | 示例

摘要

Building on the work of Von Neumann, Langton, and Sayama among others, we introduce the first examples of evolution in populations of self-reproducing configurations in asynchronous cellular automata. Reliance on a global synchronous update signal has been a limitation of all solutions since the problem of achieving self-production in cellular automata was first attacked by Von Neumann half a century ago. Results of the author obviate the need for this restriction. We review our simple constructive mechanism to transform any cellular automata network with synchronous update into one with essentially the same behavior but whose cells may be updated randomly and asyn-chronously. The generality of this mechanism is guaranteed by a general mathematical theorem that any synchronous cellular automata configuration and rule can be realized asynchronously in such a way that the behavior of the original synchronous cellular automata can be completely recovered from that of the corresponding asynchronous cellular automaton, in which temporal synchronization locally stays within small tolerances. It follows that most results on self-reproduction, universal computation and construction, and evolution in populations of self-reproducing configurations in cellular automata that have been obtained in the past carry over to the asynchronous domain using the method described here. Here we discuss requirements for evolutionary systems in cellular automata and describe implemented examples of our procedure applied to a variety of self-reproducing systems (Byl, Reggia et al., Langton, Sayama). In particular, we have implemented Sayama's evo-loop system asynchronously, giving the first example of evolution in asynchronous cellular automata.
机译:在冯·诺依曼,兰顿和佐山等人的工作的基础上,我们介绍了异步细胞自动机中自我复制配置群体进化的第一个例子。自从半个多世纪以来冯·诺伊曼(Von Neumann)首次提出在细胞自动机中实现自我生产的问题以来,对全局同步更新信号的依赖一直是所有解决方案的局限性。作者的结果消除了对此限制的需要。我们回顾了我们的简单构造机制,以将具有同步更新的任何细胞自动机网络转换为具有基本相同行为,但其细胞可以随机和异步更新的网络。通用数学定理保证了该机制的普遍性,即可以异步地实现任何同步蜂窝自动机配置和规则,从而可以从相应的异步蜂窝自动机的行为中完全恢复原始同步蜂窝自动机的行为,在这种情况下,时间同步局部保持在较小的公差范围内。随之而来的是,过去在细胞自动机中自我复制配置,通用计算和构建以及自我复制配置的进化方面的大多数结果已使用此处描述的方法转移到了异步域。在这里,我们讨论了细胞自动机中进化系统的要求,并描述了我们应用于各种自我复制系统的程序的实现示例(Byl,Reggia等,Langton,Sayama)。特别是,我们异步地实现了Sayama的evo-loop系统,给出了异步细胞自动机进化的第一个例子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号