首页> 外文会议>Earth observation and cryosphere science >INVESTIGATING THE RELATIONSHIP BETWEEN EURASIAN SNOW AND THE ARCTIC OSCILLATION WITH SATELLITE DATA AND MODELS
【24h】

INVESTIGATING THE RELATIONSHIP BETWEEN EURASIAN SNOW AND THE ARCTIC OSCILLATION WITH SATELLITE DATA AND MODELS

机译:利用卫星数据和模型调查欧亚雪与北极振荡之间的关系

获取原文
获取原文并翻译 | 示例

摘要

Recent research suggests Eurasian snow-covered arearn(SCA) influences the Arctic Oscillation (AO) via thernpolar vortex. This could be important for NorthernrnHemisphere winter season forecasting. A fairly strongrnnegative correlation between October SCA and the AO,rnbased on both monthly and daily observational data, hasrnbeen noted in the literature. While reproducing thesernprevious links when using the same data, we find nornfurther evidence of the link when using an independentrnsatellite data source, or when using a climate model.rnThe Arctic Oscillation (AO) is a hemispheric-scalernmode of climate variability that affects the NorthernrnHemisphere. The AO is linked to the stratospheric polarrnvortex, and it is thought that changes in the strength ofrnthis vortex can be felt at the surface. The ArcticrnOscillation affects the pressure pattern throughout thernentire Northern Hemisphere of the Earth, and thusrnaffects weather patterns across Northern Hemisphericrnlandmasses, such as Canada, the United States andrnEurope. For example, the positive AO phase brings mildrnand wet conditions to Northerly locations such asrnScotland and Scandinavia. Conversely, the negative AOrnphase brings mild and wet conditions to locationsin thernsubtropics, such Middle East and North Africa.rnGong et al [1] present a synopsis of published studies onrnthe relationship between snow cover and the AO. Thesernpapers focus on Eurasian October snow as a predictor ofrnthe following winter AO signature. The phenomenonrnwas investigated using observational data and anrnatmospheric general circulation model (GCM, in thisrncase ECHAM3). Focusing on Siberian snow cover,rnthese studies suggested that an anomalously high snowcoveredrnarea resulted in the weakening of the polarrnstratospheric vortex. Cohen et al [2] further proposed arnmechanism for the coupling.rnThe mechanism [2] is as follows:rn1. The area of Siberia that is covered in snowrndramatically increases throughout October.rn2. This sudden increase in snow cover results in thernmass cooling of air aloft. This results in anrnintensification of the Siberian High. This in turn resultsrnin a further decrease in temperatures.rn3. Mass cooling in the mountainous regions of Asiarnresults in an increase in the upward motion of Rossbyrnwaves (as described by the Wave Activity Flux).rn4. The breaking of these waves once they reach thernstratosphere results in the weakening of the polarrnstratospheric vortex and associated warming of thernstratospheric polar cap. 5. The weakening of the polarrnstratospheric vortex is also associated with zonal meanrnwind and geopotential height anomalies in thernstratosphere. These anomalies descend down into therntroposphere, eventually reaching the surface.rn6. This downward propagation results in thernmanifestation of a strong negative AO phase at thernsurface.rnCohen et al [3] subsequently proposed that rather thanrnthe mean monthly amount, the rate of change of SCArnduring October (termed the Snow Advance Index) is arnbetter predictor of DJF AO index than the mean OctoberrnSCA. In this work, we investigate the predictability ofrnthe AO based on both monthly and daily data.rnPrevious studies referenced here have used thernRobinson et al / Rutgers snow lab snow cover productrnas the observational data source (further details inrnsection 2.1 below). In this work, we use an independentrnsatellite data source to see if we can detect the samernsignal, alongside a coupled atmosphere-ocean GCM.rnHardiman et al [4] investigated the ability of GCMs tornrepresent this mechanism, and found that all thosernstudied failed to capture the observed correlations. Wernuse a more up-to-date model, contributing to thernCoupled Model Intercomparison Project 5.rnThis project was supported by Dan Guertin and CarolynrnAtkins at EDF Trading. Any improvement in seasonalrnforecasting for winter conditions in Europe wouldrnbenefit energy companies such as EDF Energy andrnwould give energy trading companies such as EDFrnTrading a competitive advantage.
机译:最近的研究表明,欧亚冰雪覆盖的阿雷恩(SCA)会通过极地涡旋影响北极涛动(AO)。这对于北半球冬季的预报可能很重要。在文献中已经注意到,基于月度和每日观测数据,十月份的SCA与AO之间存在相当强的负相关性。当使用相同的数据重现先前的链接时,当使用独立的卫星数据源或使用气候模型时,我们会找到该链接的其他证据。北极涛动(AO)是影响北半球的气候变化的半球尺度模式。 AO与平流层极涡有关,人们认为在表面上可以感觉到该涡强度的变化。 ArcticrnOscillation影响北半球整个地球的压力模式,从而影响北半球大陆块(如加拿大,美国和欧洲)的天气模式。例如,正AO相给北风地区(如苏格兰和斯堪的纳维亚半岛)带来了温和潮湿的条件。相反,负AOrn相给亚热带地区(如中东和北非)带来了温和潮湿的条件。rnGong等[1]提出了关于积雪与AO之间关系的已发表研究的概要。这些论文集中在欧亚十月的降雪,作为冬季AO签名的预报。使用观测数据和大气环流总循环模型(GCM,在这种情况下为ECHAM3)调查了该现象。这些研究着眼于西伯利亚积雪,表明异常高的积雪覆盖率导致极地平流层涡旋减弱。 Cohen等人[2]进一步提出了联轴器的机械机理。机理[2]如下:rn1。整个十月份,西伯利亚被大雪覆盖的面积急剧增加。积雪的突然增加导致高空空气冷却。这导致西伯利亚高地的加剧。这进而导致温度进一步降低。亚洲山区的大规模降温导致Rossbyrnwaves向上运动的增加(如Wave Activity Flux所述)。一旦这些波到达平流层,这些波的破裂会导致平流层极地涡旋减弱,并导致平流层极地盖变暖。 5.平流层极地涡旋的减弱还与平流层纬向平均风和地势高度异常有关。这些异常下降到对流层,最终到达地表。这种向下的传播导致在地表强烈的负AO相的表现。rnCohen等人[3]随后提出,不是平均每月数量,而是10月SC的变化率(称为降雪指数)是DJF AO的更好的预测因子。指数比平均OctoberrnSCA。在这项工作中,我们基于月度和每日数据调查AO的可预测性。rn此处引用的先前研究已使用rnRobinson等人/ Rutgers的积雪实验室积雪覆盖观测数据源(以下第2.1节进一步详细介绍)。在这项工作中,我们使用一个独立的卫星数据源来查看是否可以检测到相同的信号,以及耦合的大气海洋GCM。rnHardiman等人[4]研究了GCM代表这种机制的能力,发现所有被研究的对象均未能捕获观察到的相关性。 Wernuse更新了模型,为耦合模型比较项目5.rn做出了贡献。该项目由EDF Trading的Dan Guertin和CarolynrnAtkins支持。欧洲冬季条件的季节性预测的任何改善都将使EDF Energy等能源公司受益,并将为EDFrnTrading等能源贸易公司带来竞争优势。

著录项

  • 来源
  • 会议地点 Frascati(IT)
  • 作者单位

    Department of Meteorology, University of Reading, Earley Gate, Whiteknights, RG6 6BB, United Kingdom, Email:d.j.clifford@reading.ac.uk;

    Met Office, FitzRoy Road, Exeter, EX1 3PB, UK, Email: eleanor.creed@metoffice.gov.uk;

    Department of Meteorology, University of Reading, Earley Gate, Whiteknights, RG6 6BB, United Kingdom, Email:t.j.woollings@reading.ac.uk;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号