【24h】

Seismic Design of GRS Integral Bridge

机译:GRS整体桥的抗震设计

获取原文
获取原文并翻译 | 示例

摘要

The current version of the seismic design of a new bridge type, called Geosynthetic-Reinforced Soil (GRS) integral bridge, used in practice is described. This new type of bridge comprises a girder integrated to a pair of abutments (i.e., full-height rigid facings) without using bearings and a pair of approach blocks of compacted cement-mixed gravelly soil reinforced with geogrid layers connected to the facings. A seismic design method based on the pseudo-static push-over analysis of a lumped-mass frame model representing the RC members (i.e., the integrated girder and facings) is described. The most critical failure mode defined based on results from a series of model shaking table tests is the rotation of the facing, which is triggered by the passive failure in the upper part of the approach block on the passive side and the tensile rupture of the geogrid at the connection with the back face of the upper part of the facing on the active side, both caused by the lateral inertia of the girder and facings. The sub-grade reactions of the approach blocks at the back face of the facings and the subsoil at the bottom face of the footings of the facings are modeled by springs having bi-linear or tri-linear force - displacement properties upper-bounded by the passive earth pressure and bearing capacity, respectively. A working example illustrating this seismic design procedure is presented. It is shown that the GRS integral bridges that are stable when subjected to very high seismic loads equivalent to the one experienced during the 1995 Great Kobe Earthquake (so called Level 2 seismic load) can be designed.
机译:描述了实际中使用的新型桥梁的抗震设计的最新版本,称为土工合成材料加筋土(GRS)整体式桥梁。这种新型桥梁包括不使用轴承而集成到一对基台(即全高刚性面板)的大梁和一对压实的水泥混合砾石土的进场砌块,并通过与面板相连的土工格栅层进行了加固。描述了一种抗震设计方法,该方法基于代表RC构件(即一体的梁和面板)的集总质量框架模型的伪静态推覆分析。根据一系列模型振动台测试的结果定义的最关键的失效模式是工作面的旋转,这是由于进场块上部被动侧的被动失效和土工格栅的拉伸断裂引起的在与活动面的上部上部背面的连接处,这都是由于大梁和面板的横向惯性引起的。饰面背面的进路挡块的地基反应和饰面基础的底面的地基土的作用是通过具有双线性或三线性力的弹簧来模拟的,位移特性受弹簧的约束。被动土压力和承载能力。给出了说明该抗震设计程序的工作示例。结果表明,可以设计出GRS整体桥,该桥在承受非常高的地震荷载(相当于1995年神户大地震所经历的地震荷载)(所谓的2级地震荷载)时是稳定的。

著录项

  • 来源
  • 会议地点 Bologna(IT)
  • 作者单位

    Integrated Geotechnology Institute Limited, Kyoritsu Yotsuya Building, 1-23-6 Yotsuya, Shinjuku-ku, Tokyo, 160-0004, Japan;

    Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan;

    Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji, Tokyo, 185-8540, Japan;

    Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji, Tokyo, 185-8540, Japan;

    Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji, Tokyo, 185-8540, Japan;

    Integrated Geotechnology Institute Limited, Kyoritsu Yotsuya Building, 1-23-6 Yotsuya, Shinjuku-ku, Tokyo, 160-0004, Japan;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号