【24h】

Target Detection Improvements Using Temporal Integrations and Spatial Fusion

机译:使用时间积分和空间融合改进目标检测

获取原文
获取原文并翻译 | 示例

摘要

1). Both the pre- and post-detection temporal integrations considerably improve target detection by integrating only 3~5 time frames (tested by real sensor noise as well as computer generated noise). 2). The newly developed pre-detection temporal integration techniques (Additive, Multiplicative, or MIN Fusion) perform a little better than the traditional post-detection temporal integration technique (Persistency Test). Detection results can be further improved by combining both the pre- and post-detection temporal integrations. 3). The techniques developed in this study can be further used for target recognition such as the ATR using matched filtering/correlation approach. 4). The sensor clutter noise looking at real scenes (trees, grass, roads, and buildings, etc.) has been studied. The sensor clutter noise at most (> 95%) of the sensor pixels is near stationary and un-correlated between pixels as well as (almost) un-correlated across time frames. 5). The noise at a few pixels (looking at the grass near the road edge) has shown non-stationary properties (with increasing or decreasing mean across time). 6). Based on observations over the real IR sensor clutter noise, we proposed two advanced thrsholding techniques: the double-thresholding and the reverse-thresholding. They can outperform the traditional CFAR single-thresholding technique when involving complicated clutter situations. 7). From the training data, if we encounter clutters with broader pdf (probability density function) than the target, it would be important to further investigate if the broad clutter pdf is caused by non-stationary noise with a time-variant mean or is caused by a mix of different clutter types with different stationary means. Then we can accordingly select different detection techniques such as the newly proposed double-thresholding or reverse-thresholding schemes discussed in the previous section. 8). It's critical to further investigate and understand the non-stationary noise property under different weather conditions and different background scenes and textures such as grass, trees, sand, and water surfaces, etc.
机译:1)。检测前和检测后的时间积分都仅通过积分3〜5个时间帧(通过实际传感器噪声以及计算机生成的噪声进行测试)就大大改善了目标检测。 2)。新开发的检测前时间集成技术(加法,乘法或MIN融合)的性能要比传统检测后时间集成技术(持久性测试)好一点。通过组合检测前和检测后的时间积分,可以进一步提高检测结果。 3)。本研究中开发的技术可以进一步用于目标识别,例如使用匹配滤波/相关方法的ATR。 4)。已经研究了传感器在真实场景(树木,草地,道路和建筑物等)上的杂波噪声。最多(> 95%)的传感器像素的传感器杂波噪声接近平稳,像素之间不相关,并且在整个时间范围内(几乎)不相关。 5)。在几个像素处的噪声(看着道路边缘附近的草地)显示出非平稳特性(随着时间的推移平均数增加或减少)。 6)。基于对实际红外传感器杂波噪声的观察,我们提出了两种先进的阈值处理技术:双阈值处理和反向阈值处理。当涉及复杂的混乱情况时,它们可以优于传统的CFAR单阈值技术。 7)。从训练数据中,如果遇到杂波,其pdf(概率密度函数)比目标范围大,则进一步研究杂波pdf是由具有固定时变平均值的非平稳噪声引起还是由杂波引起不同杂波类型与不同固定方式的混合。然后,我们可以相应地选择不同的检测技术,例如上一节中讨论的新提出的双阈值或反向阈值方案。 8)。进一步调查和了解在不同天气条件下以及不同背景场景和纹理(例如草,树,沙和水面等)下的非平稳噪声特性至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号