【24h】

Backward Scattering Effect of Aligned Carbon Nanotube Arrays

机译:对准的碳纳米管阵列的向后散射效应

获取原文
获取原文并翻译 | 示例

摘要

In terms of operational bandwidth and speed, photonic components are superior to electronic ones. However, it is difficult to control photons on nanoscale structures for data processing and interconnection. Nanophotonic device using surface plasmon (SP) offers an ideal solution to combine the superior technical advantages of both photonics and electronics on the same chip. The SP wavelength is much shorter than that of the exciting light, allowing the use of SP in various techniques that overcome diffraction limits. In this paper, we report an interesting plasmonic effect, enhanced backward scattering, by using a periodically-aligned carbon nanotube (CNT) array. The CNTs are grown on a transparent glass substrate with an average diameter of 50 nm and a length of about 1 μm. To enhance the conductivity, the CNTs are also coated with 10-nm Au layer by using E-beam CVD technique. By shining a laser beam to the CNT array, we found that the scattering intensity is maximally enhanced at the backward incident direction. The enhanced backward incident scattering is observed by using both periodic and nonperiodic CNT samples. The experimental results suggest that the backward scattering effect is due to the SP excitation and coupling. The proposed technique exploiting aligned carbon-nanotube arrays to manipulate surface plasmon will lead to useful optical features such as optical antennae effects, retro-reflection, switching, wavelength add/drop multiplexing, and may be particularly useful for optical sensing, smart target identification and optical wireless secure communication applications.
机译:在工作带宽和速度方面,光子组件优于电子组件。然而,难以控制纳米级结构上的光子以进行数据处理和互连。使用表面等离子体激元(SP)的纳米光子器件提供了理想的解决方案,可以将光子学和电子学的卓越技术优势结合在同一芯片上。 SP的波长比激发光的波长短得多,从而可以在克服衍射极限的各种技术中使用SP。在本文中,我们报告了一个有趣的等离子体效应,通过使用周期性排列的碳纳米管(CNT)阵列增强了向后散射。 CNT在平均直径为50 nm,长度约为1μm的透明玻璃基板上生长。为了增强导电性,还通过使用电子束CVD技术在CNT上涂了10 nm Au层。通过将激光束照射到CNT阵列,我们发现散射强度在向后入射方向上得到最大增强。通过使用周期性和非周期性CNT样本,可以观察到增强的向后入射散射。实验结果表明,反向散射效应是由于SP激发和耦合引起的。提出的利用对准的碳纳米管阵列来操纵表面等离子体激元的技术将产生有用的光学特征,例如光学天线效应,回射,切换,波长增/减复用,并且可能对光学感测,智能目标识别和光学无线安全通信应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号