【24h】

Three-dimensional Measurement of Fluid Flow by Stereoscopic Tracking Velocimetry

机译:立体跟踪测速法三维测量流体流动

获取原文
获取原文并翻译 | 示例

摘要

Convective motion in fluid dynamics and heat transfer is the most important phenomenon to be understood since it can greatly influence the performances of fluid and heat transfer systems in various manners. With the advances of modern technologies, new diagnostics for mapping three-dimensional (3-D) convective flow is very necessary for fundamentals of flow physics. Especially, modern computational modeling has been greatly advanced to demand 3-D convective-flow diagnostics in order to verify and tune the methodologies and approaches. Conventional velocimetry is either pointwise or two-dimensional. If available, 3-D gross-field velocimetry can allow us unprecedented physical insight as well as the needed data for validation of numerical codes and understanding of fundamental flow physics. In an effort to meet the need of 3-D flow diagnostics, we have developed stereoscopic tracking velocimetry (STV). STV is based on the simultaneous stereoscopic monitoring of numerous particles dispersed in a carrier fluid. It can thus provide time-sequence velocity maps of an entire flow field. Here we briefly present the methodology of STV and its experimental measurement results of 3-D flow fields including the traditional flow involving a free jet and the directional solidification for material processing. STV provides a good potential for monitoring 3-D flow fields for all 3-C velocity vectors. The system is simple and the monitoring can be made near real-time. Through the preliminary investigations including the Marangoni and natural convection flows that frequently arise in extraterrestrial material processing, we have demonstrated the STV application potential. For the STV data processing, the utilization of neural networks has proven to be very effective. The BP neural networks pose an excellent pattern recognition capability for superimposed particle image identification while the Hopfield neural networks offer a desired global-optimization scheme in attaining potentially valid particle tracks to follow the flow motion. The accuracy of the STV measurement appears to be better than 3% when a CCD camera of 782x582 pixels is employed. It is believed that the accuracy can be further enhanced with use of high-resolution cameras. The investigations thus far reported here have been limited in scope at this initial stage of the technology development. With the power of the developed STV for 3-D velocity diagnostics, various phenomena involving 3-D flow will further be investigated in the future.
机译:流体动力学和热传递中的对流运动是最重要的现象,因为它可以以各种方式极大地影响流体和热传递系统的性能。随着现代技术的进步,绘制三维(3-D)对流流动的新诊断方法对于流动物理学的基础非常必要。尤其是,现代计算建模已大大提高了对3-D对流流动诊断的需求,以验证和调整方法和方法。常规测速仪是逐点的或二维的。如果可用,3-D总场测速仪可以使我们获得空前的物理洞察力以及所需的数据,以用于验证数字代码和理解基本流动物理学。为了满足3D流动诊断的需求,我们开发了立体跟踪测速仪(STV)。 STV基于对分散在载液中的众多颗粒的同时立体监视。因此,它可以提供整个流场的时间序列速度图。在这里,我们简要介绍了STV的方法及其3-D流场的实验测量结果,包括涉及自由射流的传统流和用于材料加工的定向凝固。 STV为监视所有3-C速度矢量的3-D流场提供了良好的潜力。该系统非常简单,可以进行近乎实时的监控。通过初步调查,包括在地外物质加工中经常出现的Marangoni和自然对流,我们证明了STV的应用潜力。对于STV数据处理,已证明利用神经网络非常有效。 BP神经网络为叠加的粒子图像识别提供了出色的模式识别能力,而Hopfield神经网络则提供了一种理想的全局优化方案,以实现可能有效的粒子轨迹以跟随流动运动。当使用782x582像素的CCD摄像机时,STV测量的精度似乎优于3%。相信可以通过使用高分辨率相机来进一步提高精度。迄今为止,此处报道的研究在该技术开发的初始阶段范围有限。利用开发的STV进行3-D速度诊断的能力,将来将进一步研究涉及3-D流动的各种现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号