首页> 外文会议>Conference on Laser Interaction with Tissue and Cells XV; 20040126-20040128; San Jose,CA; US >Angular Domain Imaging Of Phantom Objects Within Highly Scattering Mediums
【24h】

Angular Domain Imaging Of Phantom Objects Within Highly Scattering Mediums

机译:高度散射介质中幻影对象的角域成像

获取原文
获取原文并翻译 | 示例

摘要

Most optical tomography work within highly scattering media has employed coherence domain and time domain methodologies, both detecting the shortest path photons over the dominant randomly scattered background. Angular domain imaging instead uses micromachined collimators to observe only those photons within a small angle of the aligned laser light source, which simulations show are the shortest path photons, while rejecting heavily scattered light. These angular filters consist of micromachined silicon collimator channels 51 micron wide by 10 mm or 20 mm long on 102 micron spacing giving acceptance angles of 0.29 or 0.15 degrees respectively on a CCD detector. Phantom test objects were observed in mediums ranging from 1 to 5 cm thick at scattered to ballistic ratios of 500,000:1 to 10,000,000:1 depending on the illumination pattern. Object detection was retained at the same scattering levels for either 1 cm or 5cm thick mediums, demonstrating little dependence on medium thickness. Detection was also independent of the object size: phantoms ranging from thin structures of 100 micron wide lines and spaces to 4 mm spheres were detected at approximately the same scattering ratios. Minimum size resolution depends on CCD pixel size, not the collimator characteristics. Furthermore, detection was a function of the scattering ratio produced after the phantom's position, not of the whole medium's scattering ratio. This means objects nearer the detector are much more observable. Longer collimators significantly increase the scattered light rejection as expected. Monte-Carlo simulations with angular tracking demonstrate the object size independence and are undertaken to verify the other behaviors.
机译:在高度散射的介质中进行的大多数光学层析成像工作都采用了相干域和时域方法,都在主要的随机散射背景上检测最短路径的光子。相反,角域成像使用微机械准直仪仅观察对准激光源小角度内的那些光子,模拟显示这是最短路径的光子,而拒绝了严重散射的光。这些角滤光镜由51微米宽,10毫米长或20毫米长,102微米间距的微加工硅准直器通道组成,在CCD检测器上的接受角分别为0.29或0.15度。在1至5 cm厚的介质中观察到幻影测试对象,其散射与弹道比为500,000:1至10,000,000:1,具体取决于照明模式。对于1厘米或5厘米厚的介质,目标检测保持在相同的散射水平,这表明对介质厚度的依赖性很小。检测也与物体大小无关:以大约相同的散射比检测到从100微米宽的线条和空间的细结构到4 mm球形的幻像。最小尺寸分辨率取决于CCD像素尺寸,而不取决于准直仪特性。此外,检测是幻影位置之后产生的散射率的函数,而不是整个介质的散射率的函数。这意味着靠近探测器的物体更容易观察到。更长的准直器会大大增加预期的散射光抑制率。带有角度跟踪的蒙特卡洛仿真证明了物体的尺寸独立性,并用于验证其他行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号