首页> 外文会议>Conference on Imaging Spectrometry VIII, Jul 8-10, 2002, Seattle, Washington, USA >Hyperspectral LWIR Automated Separation of Surface Emissivity and Temperature (ASSET)
【24h】

Hyperspectral LWIR Automated Separation of Surface Emissivity and Temperature (ASSET)

机译:高光谱LWIR表面发射率和温度(ASSET)的自动分离

获取原文
获取原文并翻译 | 示例

摘要

ASSET is based on physical first principles and was developed using synthetic data. The method treats each pixel independently, assumes homogeneous, isothermal pixels and requires the following inputs: 1) Hyperspectral LWIR radiance imagery, 2) Atmospheric parameters (downwelling irradiance, upwelling radiance, and transmissivity), and 3) A library of material emissivities. For each pixel, the method determines the most appropriate material from the emissivity library. The method computes the pixel temperature assuming pure pixels. Then, the pixel temperature is used to determine the emissivity. Note that the computed emissivity may differ from that of the selected library material due to a variety of factors such as noise, mixed pixels, natural spectral variability, and inadequate atmospheric compensation. The synthetic data used to develop ASSET were constructed by computing the thermally emitted radiances of a set of materials with specified emissivities at a range of temperatures. A given set of atmospheric parameters was then applied to the radiances to obtain at-aperature radiance. Random additive gaussian noise was applied to the data. ASSET was run using the synthetic data, the given atmospheric parameters, and a spectral library containing the materials used to construct the data, as well as additional materials. The initial results from ASSET are promising. With a signal-to-noise ratio (SNR) of 500, the material was correctly classified 100% of the time. The mean absolute temperature error for this case was 0.02 K with a standard deviation of 0.02. The maximum absolute temperature error was 0.12 K. With a SNR of 300, the material was correctly classified more than 99% of the time. The mean absolute temperature error for this case was 0.04 K with a standard deviation of 0.03. The maximum absolute temperature error was 1.07 K. We present results from the simple synthetic data described above as well as results from applying ASSET to more sophisticated synthetic DIRSIG LWIR imagery.
机译:ASSET基于物理第一性原理,并使用综合数据进行开发。该方法独立地对待每个像素,假定均质,等温像素并需要以下输入:1)高光谱LWIR辐射图像,2)大气参数(下降辐射,上升辐射和透射率),以及3)材料发射率库。对于每个像素,该方法从发射率库中确定最合适的材质。该方法在假设纯像素的情况下计算像素温度。然后,像素温度用于确定发射率。请注意,由于多种因素(例如噪声,混合像素,自然光谱可变性和不足的大气补偿),计算出的发射率可能与所选库材料的发射率不同。用于开发ASSET的合成数据是通过计算在一定温度范围内具有指定发射率的一组材料的热辐射辐射来构建的。然后将一组给定的大气参数应用于辐射率以获得孔径辐射率。将随机加性高斯噪声应用于数据。使用合成数据,给定的大气参数和包含用于构造数据的材料以及其他材料的光谱库运行ASSET。 ASSET的初步结果令人鼓舞。信噪比(SNR)为500时,该材料在100%的时间内正确分类。在这种情况下,平均绝对温度误差为0.02 K,标准偏差为0.02。最大绝对温度误差为0.12K。在SNR为300的情况下,正确分类材料的时间超过了99%。在这种情况下,平均绝对温度误差为0.04 K,标准偏差为0.03。最大绝对温度误差为1.07K。我们提供了上述简单合成数据以及将ASSET应用于更复杂的合成DIRSIG LWIR图像的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号