首页> 外文会议>Conference on Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery Ⅶ Apr 16-19, 2001, Orlando, USA >On the Relationships Between Physical Phenomena, Distance Metrics, and Best Bands Selection in Hyperspectral Processing
【24h】

On the Relationships Between Physical Phenomena, Distance Metrics, and Best Bands Selection in Hyperspectral Processing

机译:高光谱处理中物理现象,距离度量与最佳谱带选择之间的关系

获取原文
获取原文并翻译 | 示例

摘要

The objective of hyperspectral processing algorithms is to efficiently capitalize on the wealth of information in the scene being imaged. Radiation collected in hundreds of contiguous electromagnetic channels and stored as data in a vector provides insight about the reflective and emissive properties of each pixel in the scene. However, it is not intuitively clear that for common applications such as estimation, classification, and detection that the best performance results from utilizing every measurement in the vector. In fact, it is quite easy to show that for some tasks, more data can degrade performance. In this paper, we explore the role of metrics and best bands algorithms in the context of maximizing the performance of hyperspectral algorithms. Specifically, we first focus on creating an intuitive framework for physical information measured by a sensor. Then, we examine how it is translated into numerical quantities by a distance metric. We discuss how two common distance metrics for hyperspectral signals, the Spectral Angle Mapper (SAM), and the Euclidean Minimum Distance (EMD), quantify the distance between two spectra. Focusing on the SAM metric, we demonstrate, in the context of target detection, how the separability of two spectra can be increased by retaining only those bands that maximize the metric. Finally, this intuition about best bands analysis for SAM is extended to the Generalized Likelihood Ratio Test (GLRT) for a practical target/background detection scenario. Results are shown for a scene imaged by the HYDICE sensor demonstrating that the separability of targets and background can be increased by carefully choosing the best bands for the test.
机译:高光谱处理算法的目标是有效利用被成像场景中的大量信息。辐射收集在数百个连续的电磁通道中,并作为数据存储在矢量中,从而可以深入了解场景中每个像素的反射和发射特性。但是,直觉上还不清楚,对于诸如估计,分类和检测之类的常见应用,最佳性能是通过利用向量中的每个测量结果得出的。实际上,很容易表明,对于某些任务,更多数据会降低性能。在本文中,我们探讨了在最大化高光谱算法性能的情况下指标和最佳波段算法的作用。具体来说,我们首先专注于为传感器测量的物理信息创建直观的框架。然后,我们研究如何通过距离度量将其转换为数值量。我们讨论了高光谱信号的两个常见距离度量,即光谱角度映射器(SAM)和欧几里得最小距离(EMD)如何量化两个光谱之间的距离。着重于SAM度量,我们演示了在目标检测的背景下如何仅保留那些使度量最大化的谱带来提高两个光谱的可分离性。最后,关于SAM最佳频带分析的直觉被扩展到了实际目标/背景检测场景的广义似然比测试(GLRT)。显示了由HYDICE传感器成像的场景的结果,表明通过仔细选择测试的最佳谱带可以提高目标和背景的可分离性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号